Blog
/
Email
/
August 10, 2022

Bytesize Security: A Guide to HTML Phishing Attachments

Darktrace guides you through the common signs of HTML phishing attachments, including common phishing emails, clever impersonations, fake webpages, and more.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Connor Mooney
SOC Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
10
Aug 2022

Common phishing emails

One of the most common types of phishing email seen by the Darktrace SOC, involves the use of HTML attachments (Figure 1). These emails make use of an attachment to hide redirects to overtly malicious or suspicious domains. Some even impersonate legitimate web pages and send any entered or captured information back to the attacker's infrastructure once opened or filled out by the recipient. Indicators of these attempts can be identified from a few key patterns found across multiple emails.

Figure 1: An example of a suspicious HTML attachment containing dynamic content

A typical feature of these HTML attachments is the use of a generic-sounding filename that relates to the message's subject line, but with no specific information pertaining to the recipient or their line of business. These files almost always contain some form of Javascript code, as they often make use of external Javascript libraries to accomplish whatever goal is being pursued. For example, an attacker might use Javascript to convincingly impersonate a trustworthy website and trick the recipient into providing credentials or sensitive information, or they might use it to deploy malware and get a foothold on the device for further compromise once opened. This can be further identified by the presence of certain links in the HTML file itself (Figure 2).

Figure 2: The HTML file previously referenced contained multiple rare and suspicious links

Figure 2 above is an example of an HTML file containing multiple links with calls for .js files. This shows that the attachment contains Javascript and is making calls for external libraries for an undetermined purpose. 

Another common red flag is when the file contains links to common Product or Service images from domains wholly unrelated to those services, as seen below (Figure 3).

Figure 3: An example of an unusual .png call from a rare domain. The subsequent image called is for a company with no apparent relation to the hosting domain

The examples above imply an obvious (and poor) attempt by the HTML file to impersonate a Microsoft webpage, likely a fake login page set up for credential harvesting, as the ‘Microsoft’ logo is being pulled from a domain entirely unrelated to Microsoft or any common image-hosting service. 

Rather than impersonating a website directly in the file and loading resources from external sources, these HTML files will instead directly point toward a webpage that already contains these elements. This comes with its own set of pros and cons: by hosting their phishing page in a public setting, they are far more likely to be taken down, however it may be easier to appear legitimate than if they were to build it all out in the HTML file itself. 

The final routine element in these types of HTML phishing emails is the mechanism by which the attacker intends to receive any successfully scammed credentials or information. If the fake webpage is entirely contained in the HTML file, this often presents as a suspicious PHP link present in the file itself (Figure 4).

Figure 4: Phishing HTMLs often include links to rare domains with PHP destinations as an indication that it will engage in some form of HTTP POST communication

PHP calls suggest that some part of the webpage is intended to submit an HTTP POST or equivalent ‘submission’ call, often present in the ‘Login’ button in these scenarios. After the victim clicks this button, the webpage sends all the form-submission items to the endpoint hosting the PHP page, which is commonly an indicator of the webserver hosting the attacker infrastructure running the phishing attack.

If the HTML file redirects to an externally hosted phishing page, identical PHP links are often found in the source code of those pages (Figure 5). This serves the same function as sending any entered credentials back to the attacker.

Figure 5: The source-code of an external-hosted phishing page, showing calls for PHP pages hosted on alternate attacker infrastructure

The process of HTML attacks is so standardized that they are commonly released in the form of easily deployable phishing kits. These can be deployed on unsuspecting compromised webservers with little to no modification, resulting in virtually identical attacks being seen year-round. WordPress seems to be a prime target for hosting such attacks, with the site owners often becoming unsuspecting victims in propagating these phishing campaigns. An unfortunate side effect of these kits being readily available is that the attackers often don't bother to set any sort of access restrictions on their phishing servers once established, which can result in their entire setup being publicly viewable with a simple link modification. One example is seen below (Figure 6).

Figure 6: The parent directory of the website hosting a suspicious PHP page was fully accessible without restriction

In this incident, the website hosting the PHP link seen earlier had a publicly accessible parent directory structure, where both the PHP file above and an additional suspicious .txt file could be seen. This .txt file appears to be where any information submitted by victims ultimately ended up written to (Figure 7).

Figure 7: The TXT file in the parent directory above appeared to contain the login information that was likely submitted to the PHP page referred to in the initial HTML attachment

Figure 7 above presents the unusual risk of not only having the victims’ credentials at the disposal of the original attacker, but also potentially exposed to any malicious actor that can get creative with a web-crawler to identify key elements of the files used by these particular phishing kits. 

Fortunately, due to the standardized nature of these ready-made phishing kits, these types of attacks often conform to a series of common behaviors that Darktrace / EMAIL excels in identifying. Despite being a popular technique, it is extremely rare for attempts using this HTML attachment method to successfully get through a correct Darktrace / EMAIL  deployment. Overall, this means one less risk for the end user to worry about.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Connor Mooney
SOC Analyst

More in this series

No items found.

Blog

/

Email

/

June 18, 2025

Darktrace Collaborates with Microsoft: Unifying Email Security with a Shared Vision

Default blog imageDefault blog image

In today’s threat landscape, email remains the most targeted vector for cyberattacks. Organizations require not only multi-layered defenses but also advanced, integrated systems that work collaboratively to proactively mitigate threats before they cause damage

That’s why we’re proud to announce a new integration between Darktrace / EMAIL and Microsoft Defender for Office 365, delivering a Unified Quarantine experience that empowers security teams with seamless visibility, control, and response across both platforms.

This announcement builds on a strong and growing collaboration. In 2024, Darktrace was honored as Microsoft UK Partner of the Year and recognized as a Security Trailblazer at the annual Microsoft Security 20/20 Awards, a testament to our shared commitment to innovation and customer-centric security.

A Shared Mission: Stopping Threats at Machine Speed

This integration is more than a technical milestone,as it’s a reflection of a shared mission: to protect organizations from both known and unknown threats, with efficiency, accuracy, and transparency.

  • Microsoft Defender for Office 365 delivers a comprehensive security framework that safeguards Microsoft 365 email and collaboration workloads leveraging advanced AI, global threat intelligence and information on known attack infrastructure.
  • Darktrace / EMAIL complements this with Self-Learning AI that understands the unique communication patterns within each organization, detecting subtle anomalies that evade traditional detection methods.

Together, we’re delivering multi-layered, adaptive protection that’s greater than the sum of its parts.

“Our integration with Microsoft gives security teams the tools they need to act faster and more precisely to detect and respond to threats,” said Jill Popelka, CEO of Darktrace. “Together, we’re strengthening defenses where it matters most to our customers: at the inbox.”

Unified Quarantine: One View, Total Clarity

The new Unified Quarantine experience gives customers a single pane of glass to view and manage email threatsregardless of which product took action. This means:

  • Faster investigations with consolidated visibility
  • Clear attribution of actions and outcomes across both platforms
  • Streamlined workflows for security teams managing complex environments

“This integration is a testament to the power of combining Microsoft’s global threat intelligence with Darktrace’s unique ability to understand the ‘self’ of an organization,” said Jack Stockdale, CTO of Darktrace. “Together, we’re delivering a new standard in proactive, adaptive email security.”

A New Era of Collaborative Cyber Defense

This collaboration represents a broader shift in cybersecurity: from siloed tools to integrated ecosystems. As attackers become more sophisticated, defenders must move faster, smarter, and in unison.

Through this integration, Darktrace and Microsoft establish a new standard for collaboration between native and third-party security solutions, enhancing not only threat detection but also comprehensive understanding and proactive measures against threats.

We’re excited to bring this innovation to our customers and continue building a future where AI and human expertise collaborate to secure the enterprise.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email

Blog

/

Network

/

June 18, 2025

Customer Case Study: Leading Petrochemical Manufacturer

Default blog imageDefault blog image

Headquartered in Saudi Arabia, this industry leading petrochemical manufacturer serves customers in more than 80 countries across diverse markets throughout Europe, Africa, Latin America, the Middle East, China, and Southeast Asia.

Cyber resiliency critical to growth strategy

This leading petrochemical manufacturer’s vision is to be one of the major global players in the production and marketing of designated petrochemicals and downstream products. The company aims to significantly increase its capacity to up to a million metric tons within the next few years.

With cyber-attacks on critical infrastructure increasing 30% globally last year, cyber resiliency is essential to supporting the company’s strategic business goals of:

  • Maximizing production through efficient asset utilization
  • Maximizing sales by conducting 90% of its business outside Saudi Arabia
  • Optimizing resources and processes by integrating with UN Global Compact principles for sustainability and efficiency
  • Growing its business portfolio by engaging in joint ventures to diversify production and add value to the economy

However, the industry leader faced several challenges in its drive to fortify its cybersecurity defenses.

Visibility gaps delay response time

The company’s existing security setup provided limited visibility to the in-house security team, hindering its ability to detect anomalous network and user activity in real time. This resulted in delayed responses to potential incidents, making proactive issue resolution difficult and any remediation in the event of a successful attack costly and time-consuming.

Manual detection drains resources

Without automated detection and response capabilities, the organization’s security team had to manually monitor for suspicious activity – a time-consuming and inefficient approach that strained resources and left the organization vulnerable. This made it difficult for the team to stay current with training or acquire new skills and certifications, which are core to the ethos of both the company’s owners and the team itself.

Cyber-attacks on critical infrastructure increasing

The petrochemical manufacturer is part of a broader ecosystem of companies, making the protection of its supply chain – both upstream and downstream – critical. With several manufacturing entities and multiple locations, the customer’s internal structure is complex and challenging to secure. As cyber-attacks on critical infrastructure escalate, it needed a more comprehensive approach to safeguard its business and the wider ecosystem.

Keeping and growing skills and focus in-house

To strengthen its cybersecurity strategy, the company considered two options:

  1. Make a significant initial and ongoing investment in a Security Operations Center (SOC), which would involve skills development outside the company and substantial management overhead.
  2. Use a combination of new, automated tools and an outsourced Managed Detection and Response (MDR) service to reduce the burden on internal security specialists and allow the company to invest in upskilling its staff so they can focus on more strategic tasks.

Faced with this choice between entirely outsourcing security and augmenting the security team with new capabilities, the customer chose the second option, selecting Darktrace to automate the company’s monitoring, detection, and response. Today, the petrochemical manufacturer is using:

Extending the SOC with 24/7 expert support

To alleviate the burden on its lean security team, the company augmented its in-house capabilities with Darktrace’s Managed Detection & Response service. This support acts as an extension of its SOC, providing 24/7 monitoring, investigation, and escalation of high-priority threats. With Darktrace’s global SOC managing alert triage and autonomously containing threats, the organization’s internal team can focus on strategic initiatives. The result is a stronger security posture and increased capacity to proactively address evolving cyber risks – without expanding headcount or sacrificing visibility.

A unique approach to AI

In its search for a new security platform, the company’s Director of Information Technology said Darktrace’s autonomous response capability, coupled with Self-Learning AI-driven threat reduction, were two big reasons for selecting Darktrace over competing products and services.

AI was a huge factor – no one else was doing what Darktrace was doing with [AI].”

Demonstrated visibility

Before Darktrace, the customer had no visibility into the network activity to and from remote worker devices. Some employees need the ability to connect to its networks at any time and from any location, including the Director of Information Technology. The trial deployment of Darktrace / ENDPOINT was a success and gave the team peace of mind that, no matter the location or device, high-value remote workers were protected by Darktrace.

Modular architecture  

Darktrace's modular architecture allowed the company to deploy security controls across its complex, multi-entity environment. The company’s different locations run on segregated networks but are still interconnected and need to be protected. Darktrace / NETWORK provides a unified view and coordinated security response across the organization’s entire network infrastructure, including endpoint devices.

Results

The petrochemical manufacturer is using Darktrace across all of its locations and has achieved total visibility across network and user activity. “Darktrace is increasing in value every day,” said the Director of Information Technology.

I don’t have a big team, and Darktrace makes our lives very, very easy, not least the automation of some of the tasks that require constant manual review.”

Time savings frees analysts to focus on proactive security

Darktrace / NETWORK provides continuous, AI-driven monitoring and analysis of the company’s network activity, user behavior, and threat patterns, establishing a baseline of what normal activity looks like, and then alerting analysts to any deviations from normal traffic, activity, and behaviors. Darktrace’s autonomous response capabilities speed up response to detected threats, meaning intervention from the security team is required for fewer incidents and alerts.

In October 2024 alone, Darktrace Cyber AI Analyst saved the team 810 investigation hours, and autonomously responded to 180 anomalous behaviors that were uncovered during the investigations. With Darktrace managing the majority of threat detection and response efforts, the security team has been able to change its day-to-day activity from manual review of traffic and alerts and belated response to activity, to proactively fortifying its detection and response posture and upskilling to meet evolving requirements.  

Layered email protection reduces phishing threats

The company’s email infrastructure posed a challenge due to petrochemical industry regulations requiring on-premises email servers, with some security delivered via Microsoft Azure. By integrating Darktrace / EMAIL into the Azure stack, the organization has reduced the volume of phishing emails its users receive by 5%.

“Now we have one more layer of security related to email – every email goes through two filters. If something is not being caught or traced by Azure, it is being detected by Darktrace,” said the Director of Information Technology. “As a result, we’re now seeing only about 15% to 20% of the phishing emails we used to receive before implementing Darktrace.”

Preparing for a secure future

The time saved using Darktrace has helped the security team take proactive steps, including preparing for new cyber resilience regulations for Saudi Arabia’s Critical National Infrastructure, as mandated by the National Cybersecurity Authority (NCA).

“The team now has ample time to prepare policies and procedures that meet the new NCA regulations and, in some cases, enhance the requirements of the new law,” said the Director of Information Technology. “All of this is possible because they don’t need to keep watch; Darktrace takes on so much of that task for them.”

Continue reading
About the author
The Darktrace Community
Your data. Our AI.
Elevate your network security with Darktrace AI
OSZAR »