Blog
/
Identity
/
May 19, 2023

Darktrace Stops Large-Scale Account Hijack

Learn how Darktrace detected and stopped a large-scale account hijack that led to a phishing attack. Protect your business with these insights.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Zoe Tilsiter
Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
19
May 2023

Introduction 

As malicious actors across the threat landscape continue to take advantage of the widespread adoption of Software-as-a-Service (SaaS) platforms and multi-factor authentication (MFA) services to gain unauthorized access to organizations’ networks, it is crucial to have appropriate security tools in place to defend against account compromise at the earliest stage.

One method frequently employed by attackers is account takeover. Account takeovers occur when a threat actor exploits credentials to login to a SaaS account, often from an unusual location where the genuine actor does not usually login from. 

Access to these accounts can be caused by harvesting credentials through phishing emails and password spray attacks, or by exploiting insecure cloud safety practices such as not having MFA enabled on user accounts, requiring only user credentials for authentication. Once the integrity of the account is compromised, the threat actor can conduct further activity, such as delivering malware, reading and exfiltrating sensitive data, and sending out phishing emails to harvest further internal and external user credentials, repeating the attack cycle [1,2]. 

In early 2023, Darktrace detected a large-scale account takeover and phishing attack on the network of a customer in the education sector that affected hundreds of accounts and resulted in thousands of emails being forwarded outside of the network. The exceptional degree of visibility provided by Darktrace DETECT™ allowed for the detection of adversarial activity at every stage of the kill chain, and direct support from the Darktrace Analyst team via the Ask the Expert (ATE) service ensured the customer was fully informed and equipped to implement remedial action. 

Details of Attack Chain

Darktrace observed the same pattern of activity on all hijacked accounts on the customer’s network; login from unfamiliar locations, enablement of a mail forwarding rule that forwards all incoming emails to malicious email addresses, and the sending of phishing emails followed by their deletion. 

Figure 1: Timeline of attack on hijacked SaaS accounts.

Initial Access

Darktrace DETECT first detected anomalous SaaS activity on the customer environment on January 14, 2023, and then again on February 3, when multiple SaaS accounts were observed logging in from atypical locations with rare IP addresses and geographically impossible travel timings, or logging in whilst the account owner was active elsewhere. Subsequent investigation using open-source intelligence (OSINT) sources revealed one of the IP addressed had recently been associated with brute-force or password spray attempt.

This pattern of unusual login behavior persisted throughout the timeframe of the attack, with more unique accounts generating model breaches each day for similarly anomalous logins. As MFA authentication was not enforced for these user logins, the initial intrusion process was enabled by requiring only credentials for authentication.

Sending Emails 

The compromised accounts were also seen sending out emails with the subject ‘Email HELP DESK’ to external and internal recipients. This was likely represented a threat actor employing social engineering tactics to gain the trust of the recipient by posing as an internal help desk.

Mail Forwarding

Following the successful logins, compromised accounts began creating email rules to forward mail to external email addresses, some of which were associated with domains that had hits for malicious activity according to OSINT sources [3].

  • chotunai[.]com
  • bymercy[.]com
  • breazeim[.]com
  • brandoza[.]com

Forwarding mail is a commonly observed tactic during SaaS compromises to control lines of communication. Malicious actors often attempt to insert themselves into ongoing correspondence for illicit purposes, such as exfiltrating sensitive information, gaining persistent access to the compromised email or redirecting invoice payments. 

Email Deletions

Shortly after the mail forwarding activity, compromised accounts were detected performing anomalous email deletions en masse. Further investigation revealed that these accounts had previously sent a large volume of phishing emails and this mass deletion likely represented an attempt to conceal these activities by deleting them from their outboxes.

On February 10, the customer applied a mass password reset on all accounts that Darktrace had identified as compromised and provisioned, privileged accounts with MFA. They have indicated that those measures successfully halted the compromise, addressing the initial point of entry.  

Darktrace Coverage

Using its Self-Learning AI, Darktrace effectively demonstrated its ability to detect unusual SaaS activity that could indicate that an account has been hijacked by malicious actors. Rather than relying on a traditional rules and signature-based approach, Darktrace models develop an understanding of the network itself and can instantly recognize when a compromised deviates from its expected pattern of life.

Figure 2: Detection of unusual SaaS activity on hijacked SaaS account.

Initial Access

Initial access was detected by the following models:

  • Security Integration / High Severity Integration Detection  
  • SaaS / Unusual Activity / Activity from Multiple Unusual IPs 
  • SaaS / Access / Unusual External Source for SaaS Credential Use 
  • SaaS / Compromise / Login From Rare Endpoint While User Is Active 

Initial access was also detected by the following Cyber AI Analyst Incidents:

  • Possible Hijack of Office365 Account 

The model breaches and AI Analyst incidents detected logins from 100% rare external IP addresses in conjunction with a lack of MFA usage, as depicted in Figure 3.

Figure 3: Breach log showing initial detection of a SaaS login from a 100% rare IP where MFA was not used.
Figure 4: Initial detection of unusual SaaS activity visualized in Darktrace's SaaS console.

Mail Forwarding

Mail forwarding was detected by the following models:

  • SaaS / Admin / Mail Forwarding Enabled 

Compromised accounts were largely detected configuring mail forwarding rules to external email addresses, ostensibly to establish persistence on the network and exfiltrate sensitive correspondence.

Figure 5: The enablement of mail forwarding was detected as 100% new or uncommon for the account in question.

Mass Email Deletion

Mass email deletion was detected by the following models:

  • SaaS / Compromise / Suspicious Login and Mass Email Deletes 
  • SaaS / Resource / Mass Email Deletes from Rare Location 
Figure 6: Compromised account deleting phishing emails it had previously sent from the outbox.

Darktrace detected accounts performing highly anomalous mass email deletions from rare locations. The actors deleted the email “Email HELP DESK” which was later confirmed as being the primary phishing email used in the attack. Deletions were observed on compromised accounts’ outboxes, presumably to conceal the malicious activity.

Darktrace also detected this linked pattern of activity in sequential models such as: 

  • SaaS / Compromise / Unusual Login, Sent Mail, Deleted Sent
  • SaaS / Compromise / Suspicious Login and Mass Email Deletes 

Ask the Expert

The customer used the ATE service to request more technical information and support concerning the attack. Darktrace’s 24/7 team of analysts were able to offer expert assistance and further details to assist in the subsequent investigations and remediation steps. 

Further Detection and Response  

Unfortunately, the customer did not have Darktrace/Email™ enabled at the time of the attack. Darktrace/Email has visibility over inbound and outbound mail-flow which provides an oversight on potential data loss incidents. In this case, Darktrace DETECT/Email would have been able to provide full visibility over the phishing emails sent by the compromised accounts, as well as the attackers attempts to spoof an internal helpdesk. Further to this, the new Analysis Outlook integration helps employees understand why an email is suspicious and enables them report emails directly to the security team, which helps to continuously build user awareness of phishing attacks. 

Darktrace/Email also enhances Darktrace/Network™ detections by triggering ‘Email Nexus’ models within Darktrace/Network, where malicious activity is detected across the digital estate, correlating moving from SaaS compromised logins to mass email spam being sent out by compromised users

Figure 7: Email Nexus models within the Darktrace/Network enhanced by Darktrace/Email

Darktrace RESPOND™ was not enabled on the customer environment at the time of the attack; if it were, Darktrace would have been able to autonomously take action against the SaaS model breaches detecting across multiple of the kill chain. RESPOND would have disabled the hijacked accounts or force them to log out for a period of time, whilst also disabling the inbox rules that had been established by malicious actors. This would have given the customer’s security team valuable time to analyze the incident and mitigate the situation, preventing the attack from escalating any further. 

Conclusion

Ultimately, Darktrace demonstrated its unparalleled visibility over customer networks which allowed for the detection of this large-scale targeted SaaS account takeover, and the subsequent phishing attack. It underscores the importance of defense in depth; critically, MFA was not enforced for this environment which likely made the targeted organization far more susceptible to compromise via credential theft. The phishing activity detected by Darktrace following this account compromise also highlights the need for email protection in any security stack. 

Darktrace’s visibility meant allowed it to detect the attack at a high degree of granularity, including the account logins, email forwarding rule creations, outbound mail, and the mass deletions of phishing emails. Darktrace’s anomaly-based detection means it does not have to rely on signatures, rules or known indicators of compromise (IoCs) when identifying an emerging threat, instead placing the emphasis on recognizing a user’s deviation from its normal behavior.

However, without the presence of an autonomous response technology able to instantly intervene and stop ongoing attacks, organizations will always be reacting to attacks once the damage is done. Darktrace RESPOND is uniquely placed to take action against suspicious activity as soon as it is detected, preventing attacks from escalating and saving customers from significant disruption to their business.

Credit to: Zoe Tilsiter, Cyber Analyst, Gernice Lee, Cyber Analyst.

Appendices

Models Breached

SaaS / Access / Unusual External Source for SaaS Credential Use

SaaS / Admin / Mail Forwarding Enabled

SaaS / Compliance / Microsoft Cloud App Security Alert Detected

SaaS / Compromise / SaaS Anomaly Following Anomalous Login 

SaaS / Compromise / Unusual Login, Sent Mail, Deleted Sent

SaaS / Compromise / Suspicious Login and Mass Email Deletes 

SaaS / Resource / Mass Email Deletes from Rare Location

SaaS / Unusual Activity / Multiple Unusual External Sources For SaaS Credential

SaaS / Unusual Activity / Activity from Multiple Unusual IPs

SaaS / Unusual Activity / Multiple Unusual SaaS Activities 

Security Integration / Low Severity Integration Detection

Security Integration / High Severity Integration Detection

List of IoCs

brandoza[.]com - domain - probable domain of forwarded email address

breazeim[.]com - domain - probable domain of forwarded email address

bymercy[.]com - domain - probable domain of forwarded email address

chotunai[.]com - domain - probable domain of forwarded email address

MITRE ATT&CK Mapping

Tactic: INITIAL ACCESS, PERSISTENCE, PRIVILEGE ESCILATION, DEFENSE EVASION

Technique: T1078.004 – Cloud Accounts

Tactic: COLLECTION

Technique: T1114- Email Collection

Tactic:COLLECTION

Technique: T1114.003- Email Forwarding Rule

Tactic: IMPACT

Technique: T1485- Data Destruction

Tactic: DEFENSE EVASION

Technique: T1578.003 – Delete Cloud Instance

References

[1] Darktrace, 2022, Cloud Application Security_ Protect your SaaS with Self-Learning AI.pdf

[2] https://www.cloudflare.com/en-gb/learning/access-management/account-takeover/ 

[3] https://www.virustotal.com/gui/domain/chotunai.com 

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Zoe Tilsiter
Cyber Analyst

More in this series

No items found.

Blog

/

Network

/

June 5, 2025

Unpacking ClickFix: Darktrace’s detection of a prolific social engineering tactic

Woman on laptop in office buildingDefault blog imageDefault blog image

What is ClickFix and how does it work?

Amid heightened security awareness, threat actors continue to seek stealthy methods to infiltrate target networks, often finding the human end user to be the most vulnerable and easily exploited entry point.

ClickFix baiting is an exploitation of the end user, making use of social engineering techniques masquerading as error messages or routine verification processes, that can result in malicious code execution.

Since March 2024, the simplicity of this technique has drawn attention from a range of threat actors, from individual cybercriminals to Advanced Persistent Threat (APT) groups such as APT28 and MuddyWater, linked to Russia and Iran respectively, introducing security threats on a broader scale [1]. ClickFix campaigns have been observed affecting organizations in across multiple industries, including healthcare, hospitality, automotive and government [2][3].

Actors carrying out these targeted attacks typically utilize similar techniques, tools and procedures (TTPs) to gain initial access. These include spear phishing attacks, drive-by compromises, or exploiting trust in familiar online platforms, such as GitHub, to deliver malicious payloads [2][3]. Often, a hidden link within an email or malvertisements on compromised legitimate websites redirect the end user to a malicious URL [4]. These take the form of ‘Fix It’ or fake CAPTCHA prompts [4].

From there, users are misled into believing they are completing a human verification step, registering a device, or fixing a non-existent issue such as a webpage display error. As a result, they are guided through a three-step process that ultimately enables the execution of malicious PowerShell commands:

  1. Open a Windows Run dialog box [press Windows Key + R]
  2. Automatically or manually copy and paste a malicious PowerShell command into the terminal [press CTRL+V]
  3. And run the prompt [press ‘Enter’] [2]

Once the malicious PowerShell command is executed, threat actors then establish command and control (C2) communication within the targeted environment before moving laterally through the network with the intent of obtaining and stealing sensitive data [4]. Malicious payloads associated with various malware families, such as XWorm, Lumma, and AsyncRAT, are often deployed [2][3].

Attack timeline of ClickFix cyber attack

Based on investigations conducted by Darktrace’s Threat Research team in early 2025, this blog highlights Darktrace’s capability to detect ClickFix baiting activity following initial access.

Darktrace’s coverage of a ClickFix attack chain

Darktrace identified multiple ClickFix attacks across customer environments in both Europe, the Middle East, and Africa (EMEA) and the United States. The following incident details a specific attack on a customer network that occurred on April 9, 2025.

Although the initial access phase of this specific attack occurred outside Darktrace’s visibility, other affected networks showed compromise beginning with phishing emails or fake CAPTCHA prompts that led users to execute malicious PowerShell commands.

Darktrace’s visibility into the compromise began when the threat actor initiated external communication with their C2 infrastructure, with Darktrace / NETWORK detecting the use of a new PowerShell user agent, indicating an attempt at remote code execution.

Darktrace / NETWORK's detection of a device making an HTTP connection with new PowerShell user agent, indicating PowerShell abuse for C2 communications.
Figure 1: Darktrace / NETWORK's detection of a device making an HTTP connection with new PowerShell user agent, indicating PowerShell abuse for C2 communications.

Download of Malicious Files for Lateral Movement

A few minutes later, the compromised device was observed downloading a numerically named file. Numeric files like this are often intentionally nondescript and associated with malware. In this case, the file name adhered to a specific pattern, matching the regular expression: /174(\d){7}/. Further investigation into the file revealed that it contained additional malicious code designed to further exploit remote services and gather device information.

Darktrace / NETWORK's detection of a numeric file, one minute after the new PowerShell User Agent alert.
Figure 2: Darktrace / NETWORK's detection of a numeric file, one minute after the new PowerShell User Agent alert.

The file contained a script that sent system information to a specified IP address using an HTTP POST request, which also processed the response. This process was verified through packet capture (PCAP) analysis conducted by the Darktrace Threat Research team.

By analyzing the body content of the HTTP GET request, it was observed that the command converts the current time to Unix epoch time format (i.e., 9 April 2025 13:26:40 GMT), resulting in an additional numeric file observed in the URI: /1744205200.

PCAP highlighting the HTTP GET request that sends information to the specific IP, 193.36.38[.]237, which then generates another numeric file titled per the current time.
Figure 3: PCAP highlighting the HTTP GET request that sends information to the specific IP, 193.36.38[.]237, which then generates another numeric file titled per the current time.

Across Darktrace’s investigations into other customers' affected by ClickFix campaigns, both internal information discovery events and further execution of malicious code were observed.

Data Exfiltration

By following the HTTP stream in the same PCAP, the Darktrace Threat Research Team assessed the activity as indicative of data exfiltration involving system and device information to the same command-and-control (C2) endpoint, , 193.36.38[.]237. This endpoint was flagged as malicious by multiple open-source intelligence (OSINT) vendors [5].

PCAP highlighting HTTP POST connection with the numeric file per the URI /1744205200 that indicates data exfiltration to 193.36.38[.]237.
Figure 4: PCAP highlighting HTTP POST connection with the numeric file per the URI /1744205200 that indicates data exfiltration to 193.36.38[.]237.

Further analysis of Darktrace’s Advanced Search logs showed that the attacker’s malicious code scanned for internal system information, which was then sent to a C2 server via an HTTP POST request, indicating data exfiltration

Advanced Search further highlights Darktrace's observation of the HTTP POST request, with the second numeric file representing data exfiltration.
Figure 5: Advanced Search further highlights Darktrace's observation of the HTTP POST request, with the second numeric file representing data exfiltration.

Actions on objectives

Around ten minutes after the initial C2 communications, the compromised device was observed connecting to an additional rare endpoint, 188.34.195[.]44. Further analysis of this endpoint confirmed its association with ClickFix campaigns, with several OSINT vendors linking it to previously reported attacks [6].

In the final HTTP POST request made by the device, Darktrace detected a file at the URI /init1234 in the connection logs to the malicious endpoint 188.34.195[.]44, likely depicting the successful completion of the attack’s objective, automated data egress to a ClickFix C2 server.

Darktrace / NETWORK grouped together the observed indicators of compromise (IoCs) on the compromised device and triggered an Enhanced Monitoring model alert, a high-priority detection model designed to identify activity indicative of the early stages of an attack. These models are monitored and triaged 24/7 by Darktrace’s Security Operations Center (SOC) as part of the Managed Threat Detection service, ensuring customers are promptly notified of malicious activity as soon as it emerges.

Darktrace correlated the separate malicious connections that pertained to a single campaign.
Figure 6: Darktrace correlated the separate malicious connections that pertained to a single campaign.

Darktrace Autonomous Response

In the incident outlined above, Darktrace was not configured in Autonomous Response mode. As a result, while actions to block specific connections were suggested, they had to be manually implemented by the customer’s security team. Due to the speed of the attack, this need for manual intervention allowed the threat to escalate without interruption.

However, in a different example, Autonomous Response was fully enabled, allowing Darktrace to immediately block connections to the malicious endpoint (138.199.156[.]22) just one second after the initial connection in which a numerically named file was downloaded [7].

Darktrace Autonomous Response blocked connections to a suspicious endpoint following the observation of the numeric file download.
Figure 7: Darktrace Autonomous Response blocked connections to a suspicious endpoint following the observation of the numeric file download.

This customer was also subscribed to our Managed Detection and Response service, Darktrace’s SOC extended a ‘Quarantine Device’ action that had already been autonomously applied in order to buy their security team additional time for remediation.

Autonomous Response blocked connections to malicious endpoints, including 138.199.156[.]22, 185.250.151[.]155, and rkuagqnmnypetvf[.]top, and also quarantined the affected device. These actions were later manually reinforced by the Darktrace SOC.
Figure 8: Autonomous Response blocked connections to malicious endpoints, including 138.199.156[.]22, 185.250.151[.]155, and rkuagqnmnypetvf[.]top, and also quarantined the affected device. These actions were later manually reinforced by the Darktrace SOC.

Conclusion

ClickFix baiting is a widely used tactic in which threat actors exploit human error to bypass security defenses. By tricking end point users into performing seemingly harmless, everyday actions, attackers gain initial access to systems where they can access and exfiltrate sensitive data.

Darktrace’s anomaly-based approach to threat detection identifies early indicators of targeted attacks without relying on prior knowledge or IoCs. By continuously learning each device’s unique pattern of life, Darktrace detects subtle deviations that may signal a compromise. In this case, Darktrace's Autonomous Response, when operating in a fully autonomous mode, was able to swiftly contain the threat before it could progress further along the attack lifecycle.

Credit to Keanna Grelicha (Cyber Analyst) and Jennifer Beckett (Cyber Analyst)

Appendices

NETWORK Models

  • Device / New PowerShell User Agent
  • Anomalous Connection / New User Agent to IP Without Hostname
  • Anomalous Connection / Posting HTTP to IP Without Hostname
  • Anomalous Connection / Powershell to Rare External
  • Device / Suspicious Domain
  • Device / New User Agent and New IP
  • Anomalous File / New User Agent Followed By Numeric File Download (Enhanced Monitoring Model)
  • Device / Initial Attack Chain Activity (Enhanced Monitoring Model)

Autonomous Response Models

  • Antigena / Network::Significant Anomaly::Antigena Significant Anomaly from Client Block
  • Antigena / Network::Significant Anomaly::Antigena Enhanced Monitoring from Client Block
  • Antigena / Network::External Threat::Antigena File then New Outbound Block
  • Antigena / Network::External Threat::Antigena Suspicious File Block
  • Antigena / Network::Significant Anomaly::Antigena Alerts Over Time Block
  • Antigena / Network::External Threat::Antigena Suspicious File Block

IoC - Type - Description + Confidence

·       141.193.213[.]11 – IP address – Possible C2 Infrastructure

·       141.193.213[.]10 – IP address – Possible C2 Infrastructure

·       64.94.84[.]217 – IP address – Possible C2 Infrastructure

·       138.199.156[.]22 – IP address – C2 server

·       94.181.229[.]250 – IP address – Possible C2 Infrastructure

·       216.245.184[.]181 – IP address – Possible C2 Infrastructure

·       212.237.217[.]182 – IP address – Possible C2 Infrastructure

·       168.119.96[.]41 – IP address – Possible C2 Infrastructure

·       193.36.38[.]237 – IP address – C2 server

·       188.34.195[.]44 – IP address – C2 server

·       205.196.186[.]70 – IP address – Possible C2 Infrastructure

·       rkuagqnmnypetvf[.]top – Hostname – C2 server

·       shorturl[.]at/UB6E6 – Hostname – Possible C2 Infrastructure

·       tlgrm-redirect[.]icu – Hostname – Possible C2 Infrastructure

·       diagnostics.medgenome[.]com – Hostname – Compromised Website

·       /1741714208 – URI – Possible malicious file

·       /1741718928 – URI – Possible malicious file

·       /1743871488 – URI – Possible malicious file

·       /1741200416 – URI – Possible malicious file

·       /1741356624 – URI – Possible malicious file

·       /ttt – URI – Possible malicious file

·       /1741965536 – URI – Possible malicious file

·       /1.txt – URI – Possible malicious file

·       /1744205184 – URI – Possible malicious file

·       /1744139920 – URI – Possible malicious file

·       /1744134352 – URI – Possible malicious file

·       /1744125600 – URI – Possible malicious file

·       /1[.]php?s=527 – URI – Possible malicious file

·       34ff2f72c191434ce5f20ebc1a7e823794ac69bba9df70721829d66e7196b044 – SHA-256 Hash – Possible malicious file

·       10a5eab3eef36e75bd3139fe3a3c760f54be33e3 – SHA-1 Hash – Possible malicious file

MITRE ATT&CK Mapping

Tactic – Technique – Sub-Technique  

Spearphishing Link - INITIAL ACCESS - T1566.002 - T1566

Drive-by Compromise - INITIAL ACCESS - T1189

PowerShell - EXECUTION - T1059.001 - T1059

Exploitation of Remote Services - LATERAL MOVEMENT - T1210

Web Protocols - COMMAND AND CONTROL - T1071.001 - T1071

Automated Exfiltration - EXFILTRATION - T1020 - T1020.001

References

[1] https://www.logpoint.com/en/blog/emerging-threats/clickfix-another-deceptive-social-engineering-technique/

[2] https://www.proofpoint.com/us/blog/threat-insight/security-brief-clickfix-social-engineering-technique-floods-threat-landscape

[3] https://cyberresilience.com/threatonomics/understanding-the-clickfix-attack/

[4] https://www.group-ib.com/blog/clickfix-the-social-engineering-technique-hackers-use-to-manipulate-victims/

[5] https://www.virustotal.com/gui/ip-address/193.36.38.237/detection

[6] https://www.virustotal.com/gui/ip-address/188.34.195.44/community

[7] https://www.virustotal.com/gui/ip-address/138.199.156.22/detection

Continue reading
About the author
Keanna Grelicha
Cyber Analyst

Blog

/

Proactive Security

/

June 4, 2025

Beyond Discovery: Adding Intelligent Vulnerability Validation to Darktrace / Attack Surface Management

Man on computer doing workDefault blog imageDefault blog image

Introducing Exploit Prediction Assessment

Security teams are drowning in vulnerability alerts, but only a fraction of those issues pose a real threat. The new Exploit Prediction Assessment feature in Darktrace / Attack Surface Management helps teams cut through the noise by validating which vulnerabilities on their external attack surface can be actively exploited.

Instead of relying solely on CVSS scores or waiting for patch cycles, Exploit Prediction Assessment uses safe, targeted simulations to test whether exposed systems can be compromised, delivering fast, evidence-based results in under 72 hours.

This capability augments traditional pen testing and complements existing ASM workflows by transforming passive discovery into actionable insight. With EPA, security teams move from reacting to long lists of potential vulnerabilities to making confident, risk-based decisions on what actually matters.

Key highlights of Exploit Prediction Assessment

Simulated attacks to validate real risk

Exploit Prediction Assessment conducts safe, simulated attacks on assets with potential security vulnerabilities that have been identified by Darktrace / Attack Surface Management. This real-time testing validates your systems' susceptibility to compromise by confirming which vulnerabilities are present and exploitable on your attack surface.

Prioritize what matters most

Confirmed security risks can be prioritized for mitigation, ensuring that the most critical threats are promptly addressed. This takes the existing letter ranking system and brings it a step further by drilling down to yet another level. Even in the most overwhelming situations, teams will be able to act on a pragmatic, clear-cut plan.

Fast results, tailored to your environment

Customers set the scope of the Exploit Prediction Assessment within Darktrace / Attack Surface Management and receive the results of the surgical vulnerability testing within 72 hours. Users will see 1 of 2 shields:

1. A green shield with a check mark: Meaning no vulnerabilities were found on scanned CVEs for the asset.

2. A red shield with a red x: Meaning at least one vulnerability was found on scanned CVEs for the asset.

Why it's a game changer

Traditionally, attack surface management tools have focused on identifying exposed assets and vulnerabilities but lacked the context to determine which issues posed the greatest risk. Without context on what’s exploitable, security teams are left triaging long lists of potential risks, operating in isolation from broader business objectives. This misalignment ultimately leads to both weakened risk posture and cross team communication and execution.

This is where Continuous Threat Exposure Management (CTEM) becomes essential. Introduced by Gartner, CTEM is a framework that helps organizations continuously assess, validate, and improve their exposure to real-world threats. The goal isn’t just visibility, it’s to understand how an attacker could move through your environment today, and what to fix first to stop them.

Exploit Prediction Assessment brings this philosophy to life within Darktrace / Attack Surface Management. By safely simulating exploit attempts against identified vulnerabilities, it validates which exposures are truly at risk—transforming ASM from a discovery tool into a risk-based decision engine.

This capability directly supports the validation and prioritization phases of CTEM, helping teams focus on exploitable vulnerabilities rather than theoretical ones.  This shift from visibility to action reduces the risk of critical vulnerabilities in the technology stack being overlooked, turning overwhelming vulnerability data into focused, clear actionable insights.

As attack surfaces continue to grow and change, organizations need more than static scans they need continuous, contextual insight. Exploit Prediction Assessment ensures your ASM efforts evolve with the threat landscape, making CTEM a practical reality, not just a strategy.

Exploit Prediction Assessment in action

With Darktrace / Attack Surface Management organizations can get Exploit Prediction Assessment, and the cyber risk team no longer guesses which vulnerabilities matter most. Instead, they identify several externally exposed areas of their attack surface, then use the feature to surgically test for exploitability across these exposed endpoints. Within 72 hours, they receive a report:  

Positive outcome: Based on information in the html or the headers it seems that a vulnerable software version is running on an externally exposed infrastructure. By running a targeted attack on this infrastructure, we can confirm that it cannot be abused.

Negative outcome: Based on information in the html or the headers it seems that a vulnerable software version is running on an externally exposed infrastructure. By running a targeted attack on this infrastructure, we can confirm that it can be exploited, so we can predict it being exploited.

This second outcome changes everything. The team immediately prioritizes the exploitable asset for patching and takes the necessary adjustments to mitigate exposure until the fix is deployed.

Instead of spreading their resources thin across dozens of alerts, they focus on what poses a real threat, saving time, reducing risk, and demonstrating actionable results to stakeholders.

Conclusion

Exploit Predication Assessment bolsters Darktrace’s commitment to proactive cybersecurity. It supports intelligent prioritization of vulnerabilities, keeping organizations ahead of emerging threats. With this new addition to / Attack Surface Management, teams have another tool to empower a more efficient approach to addressing security gaps in real-time.

Stay tuned for more updates and insights on how Darktrace continues to develop a culture of proactive security across the entire ActiveAI Security Platform.

[related-resource]

Continue reading
About the author
Kelland Goodin
Product Marketing Specialist
Your data. Our AI.
Elevate your network security with Darktrace AI
OSZAR »