Blog
/
Network
/
November 20, 2023

Understanding and Mitigating Sectop RAT

Understand the risks posed by the Sectop remote access Trojan and how Darktrace implements strategies to enhance cybersecurity defenses.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Justin Torres
Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
20
Nov 2023

Introduction

As malicious actors across the threat landscape continue to look for new ways to gain unauthorized access to target networks, it is unsurprising to see Remote Access Trojans (RATs) leveraged more and more. These RATs are downloaded discretely without the target’s knowledge, typically through seemingly legitimate software downloads, and are designed to gain highly privileged network credentials, ultimately allowing attackers to have remote control over compromised devices. [1]

SectopRAT is one pertinent example of a RAT known to adopt a number of stealth functions in order to gather and exfiltrate sensitive data from its targets including passwords, cookies, autofill and history data stores in browsers, as well as cryptocurrency wallet details and system hardware information. [2]

In early 2023, Darktrace identified a resurgence of the SectopRAT across customer environments, primarily targeting educational industries located in the United States (US), Europe, the Middle East and Africa (EMEA) and Asia-Pacific (APAC) regions. Darktrace DETECT™ was able to successfully identify suspicious activity related to SectopRAT at the network level, as well as any indicators of post-compromise on customer environments that did not have Darktrace RESPOND™ in place to take autonomous preventative action.

What is SectopRAT?

First discovered in early 2019, the SectopRAT is a .NET RAT that contains information stealing capabilities. It is also known under the alias ‘ArechClient2’, and is commonly distributed through drive-by downloads of illegitimate software and utilizes malvertising, including via Google Ads, to increase the chances of it being downloaded.

The malware’s code was updated at the beginning of 2021, which led to refined and newly implemented features, including command and control (C2) communication encryption with Advanced Encryption Stanard 256 (AES256) and additional commands. SectopRAT also has a function called "BrowserLogging", ultimately sending any actions it conducts on web browsers to its C2 infrastructure. When the RAT is executed, it then connects to a Pastebin associated hostname to retrieve C2 information; the requested file reaches out to get the public IP address of the infected device. To receive commands, it connects to its C2 server primarily on port 15647, although other ports have been highlighted by open source intelligence (OSINT), which include 15678, 15649, 228 and 80. Ultimately, sensitive data data gathered from target networks is then exfiltrated to the attacker’s C2 infrastructure, typically in a JSON file [3].

Darktrace Coverage

During autonomous investigations into affected customer networks, Darktrace DETECT was able to identify SSL connections to the endpoint pastebin[.]com over port 443, followed by failed connections to one of the IPs and ports (i.e., 15647, 15648, 15649) associated with SectopRAT. This resulted in the devices breaching the ‘Compliance/Pastebin and Anomalous Connection/Multiple Failed Connections to Rare Endpoint’ models, respectively.

In some instances, Darktrace observed a higher number of attempted connections that resulted in the additional breach of the model ‘Compromise / Large Number of Suspicious Failed Connections’.

Over a period of three months, Darktrace investigated multiple instances of SectopRAT infections across multiple clients, highlighting indicators of compromise (IoCs) through related endpoints.Looking specififically at one customer’s activity which centred on January 25, 2023, one device was observed initially making suspicious connections to a Pastebin endpoint, 104.20.67[.]143, likely in an attempt to receive C2 information.

Darktrace DETECT recognized this activity as suspicious, causing the 'Compliance / Pastebin' DETECT models to breach. In response to this detection, Darktrace RESPOND took swift action against the Pastebin connections by blocking them and preventing the device from carrying out further connections with Pastebin endpoints. Darktrace RESPOND actions related to blocking Pastebin connections were commonly observed on this device throughout the course of the attack and likely represented threat actors attempting to exfiltrate sensitive data outside the network.

Darktrace UI image
Figure 1: Model breach event log highlighting the Darktrace DETECT model breach ‘Compliance / Pastebin’.

Around the same time, Darktrace observed the device making a large number of failed connections to an unusual exernal location in the Netherlands, 5.75.147[.]135, via port 15647. Darktrace recognized that this endpoint had never previously been observed on the customer’s network and that the frequency of the failed connections could be indicative of beaconing activity. Subsequent investigation into the endpoint using OSINT indicated it had links to malware, though Darktrace’s successful detection did not need to rely on this intelligence.

Darktrace model breach event log
Figure 2: Model breach event log highlighting the multiple failed connectiosn to the suspicious IP address, 5.75.147[.]135 on January 25, 2023, causing the Darktrace DETECT model ‘Anomalous Connection / Multiple Failed Connections to Rare Endpoint’ to breach.

After these initial set of breaches on January 25, the same device was observed engaging in further external connectivity roughly a month later on February 27, including additional failed connections to the IP 167.235.134[.]14 over port 15647. Once more, multiple OSINT sources revealed that this endpoint was indeed a malicious C2 endpoint.

Darktrace model breach event log 2
Figure 3: Model breach event log highlighting the multiple failed connectiosn to the suspicious IP address, 167.235.134[.]14 on February 27, 2023, causing the Darktrace DETECT model ‘Anomalous Connection / Multiple Failed Connections to Rare Endpoint’ to breach.

While the initial Darktrace coverage up to this point has highlighted the attempted C2 communication and how DETECT was able to alert on the suspicious activity, Pastebin activity was commonly observed throughout the course of this attack. As a result, when enabled in autonomous response mode, Darktrace RESPOND was able to take swift mitigative action by blocking all connections to Pastebin associated hostnames and IP addresses. These interventions by RESPOND ultimately prevented malicious actors from stealing sensitive data from Darktrace customers.

Darktrace RESPOND action list
Figure 4: A total of nine Darktrace RESPOND actions were applied against suspicious Pastebin activity during the course of the attack.

In another similar case investigated by the Darktrace, multiple devices were observed engaging in external connectivity to another malicious endpoint,  88.218.170[.]169 (AS207651 Hosting technology LTD) on port 15647.  On April 17, 2023, at 22:35:24 UTC, the breach device started making connections; of the 34 attempts, one connection was successful – this connection lasted 8 minutes and 49 seconds. Darktrace DETECT’s Self-Learning AI understood that these connections represented a deviation from the device’s usual pattern of behavior and alerted on the activity with the ‘Multiple Connections to new External TCP Port’ model.

Darktrace model breach event log
Figure 5: Model breach event log highlighting the affected device successfully connecting to the suspicious endpoint, 88.218.170[.]169.
Darktrace advanced search query
Figure 6: Advanced Search query highlighting the one successful connection to the endpoint 88.218.170[.]169 out of the 34 attempted connections.

A few days later, on April 20, 2023, at 12:33:59 (UTC) the source device connected to a Pastebin endpoint, 172.67.34[.]170 on port 443 using the SSL protocol, that had never previously be seen on the network. According to Advanced Search data, the first SSL connection lasted over two hours. In total, the device made 9 connections to pastebin[.]com and downloaded 85 KB of data from it.

Darktrace UI highlighting connections
Figure 7: Screenshot of the Darktrace UI highlighting the affected device making multiple connections to Pastebin and downloading 85 KB of data.

Within the same minute, Darktrace detected the device beginning to make a large number of failed connections to another suspicious endpoints, 34.107.84[.]7 (AS396982 GOOGLE-CLOUD-PLATFORM) via port 15647. In total the affected device was observed initiating 1,021 connections to this malicious endpoint, all occurring over the same port and resulting the failed attempts.

Darktrace advanced search query 2
Figure 8: Advanced Search query highlighting the affected device making over one thousand connections to the suspicious endpoint 34.107.84[.]7, all of which failed.

Conclusion

Ultimately, thanks to its Self-Learning AI and anomaly-based approach to threat detection, Darktrace was able to preemptively identify any suspicious activity relating to SectopRAT at the network level, as well as post-compromise activity, and bring it to the immediate attention of customer security teams.

In addition to the successful and timely detection of SectopRAT activity, when enabled in autonomous response mode Darktrace RESPOND was able to shut down suspicious connections to endpoints used by threat actors as malicious infrastructure, thus preventing successful C2 communication and potential data exfiltration.

In the face of a Remote Access Trojan, like SectopRAT, designed to steal sensitive corporate and personal information, the Darktrace suite of products is uniquely placed to offer organizations full visibility over any emerging activity on their networks and respond to it without latency, safeguarding their digital estate whilst causing minimal disruption to business operations.

Credit to Justin Torres, Cyber Analyst, Brianna Leddy, Director of Analysis

Appendices

Darktrace Model Detection:

  • Compliance / Pastebin
  • Anomalous Connection / Multiple Failed Connections to Rare Endpoint
  • Compromise / Large Number of Suspicious Failed Connections
  • Anomalous Connection / Multiple Connections to New External TCP Port

List of IoCs

IoC - Type - Description + Confidence

5.75.147[.]135 - IP - SectopRAT C2 Endpoint

5.75.149[.]1 - IP - SectopRAT C2 Endpoint

34.27.150[.]38 - IP - SectopRAT C2 Endpoint

34.89.247[.]212 - IP - SectopRAT C2 Endpoint

34.107.84[.]7 - IP - SectopRAT C2 Endpoint

34.141.16[.]89 - IP - SectopRAT C2 Endpoint

34.159.180[.]55 - IP - SectopRAT C2 Endpoint

35.198.132[.]51 - IP - SectopRAT C2 Endpoint

35.226.102[.]12 - IP - SectopRAT C2 Endpoint

35.234.79[.]173 - IP - SectopRAT C2 Endpoint

35.234.159[.]213 - IP - SectopRAT C2 Endpoint

35.242.150[.]95 - IP - SectopRAT C2 Endpoint

88.218.170[.]169 - IP - SectopRAT C2 Endpoint

162.55.188[.]246 - IP - SectopRAT C2 Endpoint

167.235.134[.]14 - IP - SectopRAT C2 Endpoint

MITRE ATT&CK Mapping

Model: Compliance / Pastebin

ID: T1537

Tactic: EXFILTRATION

Technique Name: Transfer Data to Cloud Account

Model: Anomalous Connection / Multiple Failed Connections to Rare Endpoint

ID: T1090.002

Sub technique of: T1090

Tactic: COMMAND AND CONTROL

Technique Name: External Proxy

ID: T1095

Tactic: COMMAND AND CONTROL

Technique Name: Non-Application Layer Protocol

ID: T1571

Tactic: COMMAND AND CONTROL

Technique Name: Non-Standard Port

Model: Compromise / Large Number of Suspicious Failed Connections

ID: T1571

Tactic: COMMAND AND CONTROL

Technique Name: Non-Standard Port

ID: T1583.006

Sub technique of: T1583

Tactic: RESOURCE DEVELOPMENT

Technique Name: Web Services

Model: Anomalous Connection / Multiple Connections to New External TCP Port

ID: T1095        

Tactic: COMMAND AND CONTROL    

Technique Name: Non-Application Layer Protocol

ID: T1571

Tactic: COMMAND AND CONTROL    

Technique Name: Non-Standard Port

References

1.     https://www.techtarget.com/searchsecurity/definition/RAT-remote-access-Trojan

2.     https://malpedia.caad.fkie.fraunhofer.de/details/win.sectop_rat

3.     https://threatfox.abuse.ch/browse/malware/win.sectop_rat

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Justin Torres
Cyber Analyst

More in this series

No items found.

Blog

/

/

May 8, 2025

Anomaly-based threat hunting: Darktrace's approach in action

person working on laptopDefault blog imageDefault blog image

What is threat hunting?

Threat hunting in cybersecurity involves proactively and iteratively searching through networks and datasets to detect threats that evade existing automated security solutions. It is an important component of a strong cybersecurity posture.

There are several frameworks that Darktrace analysts use to guide how threat hunting is carried out, some of which are:

  • MITRE Attack
  • Tactics, Techniques, Procedures (TTPs)
  • Diamond Model for Intrusion Analysis
  • Adversary, Infrastructure, Victims, Capabilities
  • Threat Hunt Model – Six Steps
  • Purpose, Scope, Equip, Plan, Execute, Feedback
  • Pyramid of Pain

These frameworks are important in baselining how to run a threat hunt. There are also a combination of different methods that allow defenders diversity– regardless of whether it is a proactive or reactive threat hunt. Some of these are:

  • Hypothesis-based threat hunting
  • Analytics-driven threat hunting
  • Automated/machine learning hunting
  • Indicator of Compromise (IoC) hunting
  • Victim-based threat hunting

Threat hunting with Darktrace

At its core, Darktrace relies on anomaly-based detection methods. It combines various machine learning types that allows it to characterize what constitutes ‘normal’, based on the analysis of many different measures of a device or actor’s behavior. Those types of learning are then curated into what are called models.

Darktrace models leverage anomaly detection and integrate outputs from Darktrace Deep Packet Inspection, telemetry inputs, and additional modules, creating tailored activity detection.

This dynamic understanding allows Darktrace to identify, with a high degree of precision, events or behaviors that are both anomalous and unlikely to be benign.  On top of machine learning models for detection, there is also the ability to change and create models showcasing the tool’s diversity. The Model Editor allows security teams to specify values, priorities, thresholds, and actions they want to detect. That means a team can create custom detection models based on specific use cases or business requirements. Teams can also increase the priority of existing detections based on their own risk assessments to their environment.

This level of dexterity is particularly useful when conducting a threat hunt. As described above, and in previous ‘Inside the SOC’ blogs such a threat hunt can be on a specific threat actor, specific sector, or a  hypothesis-based threat hunt combined with ‘experimenting’ with some of Darktrace’s models.

Conducting a threat hunt in the energy sector with experimental models

In Darktrace’s recent Threat Research report “AI & Cybersecurity: The state of cyber in UK and US energy sectors” Darktrace’s Threat Research team crafted hypothesis-driven threat hunts, building experimental models and investigating existing models to test them and detect malicious activity across Darktrace customers in the energy sector.

For one of the hunts, which hypothesised utilization of PerfectData software and multi-factor authentication (MFA) bypass to compromise user accounts and destruct data, an experimental model was created to detect a Software-as-a-Service (SaaS) user performing activity relating to 'PerfectData Software’, known to allow a threat actor to exfiltrate whole mailboxes as a PST file. Experimental model alerts caused by this anomalous activity were analyzed, in conjunction with existing SaaS and email-related models that would indicate a multi-stage attack in line with the hypothesis.

Whilst hunting, Darktrace researchers found multiple model alerts for this experimental model associated with PerfectData software usage, within energy sector customers, including an oil and gas investment company, as well as other sectors. Upon further investigation, it was also found that in June 2024, a malicious actor had targeted a renewable energy infrastructure provider via a PerfectData Software attack and demonstrated intent to conduct an Operational Technology (OT) attack.

The actor logged into Azure AD from a rare US IP address. They then granted Consent to ‘eM Client’ from the same IP. Shortly after, the actor granted ‘AddServicePrincipal’ via Azure to PerfectData Software. Two days later, the actor created a  new email rule from a London IP to move emails to an RSS Feed Folder, stop processing rules, and mark emails as read. They then accessed mail items in the “\Sent” folder from a malicious IP belonging to anonymization network,  Private Internet Access Virtual Private Network (PIA VPN) [1]. The actor then conducted mass email deletions, deleting multiple instances of emails with subject “[Name] shared "[Company Name] Proposal" With You” from the  “\Sent folder”. The emails’ subject suggests the email likely contains a link to file storage for phishing purposes. The mass deletion likely represented an attempt to obfuscate a potential outbound phishing email campaign.

The Darktrace Model Alert that triggered for the mass deletes of the likely phishing email containing a file storage link.
Figure 1: The Darktrace Model Alert that triggered for the mass deletes of the likely phishing email containing a file storage link.

A month later, the same user was observed downloading mass mLog CSV files related to proprietary and Operational Technology information. In September, three months after the initial attack, another mass download of operational files occurred by this actor, pertaining to operating instructions and measurements, The observed patience and specific file downloads seemingly demonstrated an intent to conduct or research possible OT attack vectors. An attack on OT could have significant impacts including operational downtime, reputational damage, and harm to everyday operations. Darktrace alerted the impacted customer once findings were verified, and subsequent actions were taken by the internal security team to prevent further malicious activity.

Conclusion

Harnessing the power of different tools in a security stack is a key element to cyber defense. The above hypothesis-based threat hunt and custom demonstrated intent to conduct an experimental model creation demonstrates different threat hunting approaches, how Darktrace’s approach can be operationalized, and that proactive threat hunting can be a valuable complement to traditional security controls and is essential for organizations facing increasingly complex threat landscapes.

Credit to Nathaniel Jones (VP, Security & AI Strategy, Field CISO at Darktrace) and Zoe Tilsiter (EMEA Consultancy Lead)

References

  1. https://spur.us/context/191.96.106.219

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO

Blog

/

/

May 6, 2025

Combatting the Top Three Sources of Risk in the Cloud

woman working on laptopDefault blog imageDefault blog image

With cloud computing, organizations are storing data like intellectual property, trade secrets, Personally Identifiable Information (PII), proprietary code and statistics, and other sensitive information in the cloud. If this data were to be accessed by malicious actors, it could incur financial loss, reputational damage, legal liabilities, and business disruption.

Last year data breaches in solely public cloud deployments were the most expensive type of data breach, with an average of $5.17 million USD, a 13.1% increase from the year before.

So, as cloud usage continues to grow, the teams in charge of protecting these deployments must understand the associated cybersecurity risks.

What are cloud risks?

Cloud threats come in many forms, with one of the key types consisting of cloud risks. These arise from challenges in implementing and maintaining cloud infrastructure, which can expose the organization to potential damage, loss, and attacks.

There are three major types of cloud risks:

1. Misconfigurations

As organizations struggle with complex cloud environments, misconfiguration is one of the leading causes of cloud security incidents. These risks occur when cloud settings leave gaps between cloud security solutions and expose data and services to unauthorized access. If discovered by a threat actor, a misconfiguration can be exploited to allow infiltration, lateral movement, escalation, and damage.

With the scale and dynamism of cloud infrastructure and the complexity of hybrid and multi-cloud deployments, security teams face a major challenge in exerting the required visibility and control to identify misconfigurations before they are exploited.

Common causes of misconfiguration come from skill shortages, outdated practices, and manual workflows. For example, potential misconfigurations can occur around firewall zones, isolated file systems, and mount systems, which all require specialized skill to set up and diligent monitoring to maintain

2. Identity and Access Management (IAM) failures

IAM has only increased in importance with the rise of cloud computing and remote working. It allows security teams to control which users can and cannot access sensitive data, applications, and other resources.

Cybersecurity professionals ranked IAM skills as the second most important security skill to have, just behind general cloud and application security.

There are four parts to IAM: authentication, authorization, administration, and auditing and reporting. Within these, there are a lot of subcomponents as well, including but not limited to Single Sign-On (SSO), Two-Factor Authentication (2FA), Multi-Factor Authentication (MFA), and Role-Based Access Control (RBAC).

Security teams are faced with the challenge of allowing enough access for employees, contractors, vendors, and partners to complete their jobs while restricting enough to maintain security. They may struggle to track what users are doing across the cloud, apps, and on-premises servers.

When IAM is misconfigured, it increases the attack surface and can leave accounts with access to resources they do not need to perform their intended roles. This type of risk creates the possibility for threat actors or compromised accounts to gain access to sensitive company data and escalate privileges in cloud environments. It can also allow malicious insiders and users who accidentally violate data protection regulations to cause greater damage.

3. Cross-domain threats

The complexity of hybrid and cloud environments can be exploited by attacks that cross multiple domains, such as traditional network environments, identity systems, SaaS platforms, and cloud environments. These attacks are difficult to detect and mitigate, especially when a security posture is siloed or fragmented.  

Some attack types inherently involve multiple domains, like lateral movement and supply chain attacks, which target both on-premises and cloud networks.  

Challenges in securing against cross-domain threats often come from a lack of unified visibility. If a security team does not have unified visibility across the organization’s domains, gaps between various infrastructures and the teams that manage them can leave organizations vulnerable.

Adopting AI cybersecurity tools to reduce cloud risk

For security teams to defend against misconfigurations, IAM failures, and insecure APIs, they require a combination of enhanced visibility into cloud assets and architectures, better automation, and more advanced analytics. These capabilities can be achieved with AI-powered cybersecurity tools.

Such tools use AI and automation to help teams maintain a clear view of all their assets and activities and consistently enforce security policies.

Darktrace / CLOUD is a Cloud Detection and Response (CDR) solution that makes cloud security accessible to all security teams and SOCs by using AI to identify and correct misconfigurations and other cloud risks in public, hybrid, and multi-cloud environments.

It provides real-time, dynamic architectural modeling, which gives SecOps and DevOps teams a unified view of cloud infrastructures to enhance collaboration and reveal possible misconfigurations and other cloud risks. It continuously evaluates architecture changes and monitors real-time activity, providing audit-ready traceability and proactive risk management.

Real-time visibility into cloud assets and architectures built from network, configuration, and identity and access roles. In this unified view, Darktrace / CLOUD reveals possible misconfigurations and risk paths.
Figure 1: Real-time visibility into cloud assets and architectures built from network, configuration, and identity and access roles. In this unified view, Darktrace / CLOUD reveals possible misconfigurations and risk paths.

Darktrace / CLOUD also offers attack path modeling for the cloud. It can identify exposed assets and highlight internal attack paths to get a dynamic view of the riskiest paths across cloud environments, network environments, and between – enabling security teams to prioritize based on unique business risk and address gaps to prevent future attacks.  

Darktrace’s Self-Learning AI ensures continuous cloud resilience, helping teams move from reactive to proactive defense.

[related-resource]

Continue reading
About the author
Pallavi Singh
Product Marketing Manager, OT Security & Compliance
Your data. Our AI.
Elevate your network security with Darktrace AI
OSZAR »