Blog
/
Network
/
December 6, 2023

How Darktrace Triumphed Over MyKings Botnet

Darktrace has provided full visibility over the MyKings botnet kill chain from the beginning of its infections to the eventual cryptocurrency mining activity.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Oluwatosin Aturaka
Analyst Team Lead, Cambridge
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
06
Dec 2023

Botnets: A persistent cyber threat

Since their appearance in the wild over three decades ago, botnets have consistently been the attack vector of choice for many threat actors. The most prevalent of these attack vectors are distributed denial of service (DDoS) and phishing campaigns. Their persistent nature means that even if a compromised device in identified, attackers can continue to operate by using the additional compromised devices they will likely have on the target network. Similarly, command and control (C2) infrastructure can easily be restructured between infected systems, making it increasingly difficult to remove the infection.  

MyKings Botnet

One of the most prevalent and sophisticated examples in recent years is the MyKings botnet, also known as Smominru or DarkCloud. Darktrace has observed numerous cases of MyKings botnet compromises across multiple customer environments in several different industries as far back as August 2022. The diverse tactics, techniques, and procedures (TTPs) and sophisticated kill chains employed by MyKings botnet may prove a challenge to traditional rule and signature-based detections.

However, Darktrace’s anomaly-centric approach enabled it to successfully detect a wide-range of indicators of compromise (IoCs) related to the MyKings botnet and bring immediate awareness to customer security teams, as it demonstrated on the network of multiple customers between March and August 2023.

Background on MyKings Botnet

MyKings has been active and spreading steadily since 2016 resulting in over 520,000 infections worldwide.[1] Although verified attribution of the botnet remains elusive, the variety of targets and prevalence of crypto-mining software on affected devices suggests the threat group behind the malware is financially motivated. The operators behind MyKings appear to be highly opportunistic, with attacks lacking an obvious specific target industry. Across Darktrace’s customer base, the organizations affected were representative of multiple industries such as entertainment, mining, education, information technology, health, and transportation.

Given its longevity, the MyKings botnet has unsurprisingly evolved since its first appearance years ago. Initial analyses of the botnet showed that the primary crypto-related activity on infected devices was the installation of Monero-mining software. However, in 2019 researchers discovered a new module within the MyKings malware that enabled clipboard-jacking, whereby the malware replaces a user's copied cryptowallet address with the operator's own wallet address in order to siphon funds.[2]

Similar to other botnets such as the Outlaw crypto-miner, the MyKings botnet can also kill running processes of unrelated malware on the compromised hosts that may have resulted from prior infection.[3] MyKings has also developed a comprehensive set of persistence techniques, including: the deployment of bootkits, initiating the botnet immediately after a system reboot, configuring Registry run keys, and generating multiple Scheduled Tasks and WMI listeners.[4] MyKings have also been observed rotating tools and payloads over time to propagate the botnet. For example, some operators have been observed utilizing PCShare, an open-source remote access trojan (RAT) customized to conduct C2 services, execute commands, and download mining software[5].

Darktrace Coverage

Across observed customer networks between March and August 2023, Darktrace identified the MyKings botnet primarily targeting Windows-based servers that supports services like MySQL, MS-SQL, Telnet, SSH, IPC, WMI, and Remote Desktop (RDP).  In the initial phase of the attack, the botnet would initiate a variety of attacks against a target including brute-forcing and exploitation of unpatched vulnerabilities on exposed servers. The botnet delivers a variety of payloads to the compromised systems including worm downloaders, trojans, executable files and scripts.

This pattern of activity was detected across the network of one particular Darktrace customer in the education sector in early March 2023. Unfortunately, this customer did not have Darktrace RESPOND™ deployed on their network at the time of the attack, meaning the MyKings botnet was able to move through the cyber kill chain ultimately achieving its goal, which in this case was mining cryptocurrency.

Initial Access

On March 6, Darktrace observed an internet-facing SQL server receiving an unusually large number of incoming MySQL connections from the rare external endpoint 171.91.76[.]31 via port 1433. While it is not possible to confirm whether these suspicious connections represented the exact starting point of the infection, such a sudden influx of SQL connection from a rare external endpoint could be indicative of a malicious attempt to exploit vulnerabilities in the server's SQL database or perform password brute-forcing to gain unauthorized access. Given that MyKings typically spreads primarily through such targeting of internet-exposed devices, the pattern of activity is consistent with potential initial access by MyKings.[6]

Initial Command and Control

The device then proceeded to initiate a series of repeated HTTP connections between March 6 and March 10, to the domain www[.]back0314[.]ru (107.148.239[.]111). These connections included HTTP GET requests featuring URIs such as ‘/back.txt',  suggesting potential beaconing and C2 communication. The device continued this connectivity to the external host over the course of four days, primarily utilizing destination ports 80, and 6666. While port 80 is commonly utilized for HTTP connections, port 6666 is a non-standard port for the protocol. Such connectivity over non-standard ports can indicate potential detection evasion and obfuscation tactics by the threat actors.  During this time, the device also initiated repeated connections to additional malicious external endpoints with seemingly algorithmically generated hostnames such as pc.pc0416[.]xyz.

Darktrace UI image
Figure 1: Model breach showing details of the malicious domain generation algorithm (DGA) connections.

Tool Transfer

While this beaconing activity was taking place, the affected device also began to receive potential payloads from unusual external endpoints. On April 29, the device made an HTTP GET request for “/power.txt” to the endpoint 192.236.160[.]237, which was later discovered to have multiple open-source intelligence (OSINT) links to malware. Power.txt is a shellcode written in PowerShell which is downloaded and executed with the purpose of disabling Windows Defenders related functions.[7] After the initial script was downloaded (and likely executed), Darktrace went on to detect the device making a series of additional GET requests for several varying compressed and executable files. For example, the device made HTTP requests for '/pld/cmd.txt' to the external endpoint 104.233.224[.]173. In response the external server provided numerous files, including ‘u.exe’, and ‘upsup4.exe’ for download, both of which share file names with previously identified MyKings payloads.

MyKings deploys a diverse array of payloads to expand the botnet and secure a firm position within a compromised system. This multi-faceted approach may render conventional security measures less effective due to the intricacies of and variety of payloads involved in compromises. Darktrace, however, does not rely on static or outdated lists of IoCs in order to detect malicious activity. Instead, DETECT’s Self-Learning AI allows it to identify emerging compromise activity by recognizing the subtle deviations in an affected device’s behavior that could indicate it has fallen into the hands of malicious actors.

Figure 2: External site summary of the endpoint 103.145.106[.]242 showing the rarity of connectivity to the external host.

Achieving Objectives – Crypto-Mining

Several weeks after the initial payloads were delivered and beaconing commenced, Darktrace finally detected the initiation of crypto-mining operations. On May 27, the originally compromised server connected to the rare domain other.xmrpool[.]ru over port 1081. As seen in the domain name, this endpoint appears to be affiliated with pool mining activity and the domain has various OSINT affiliations with the cryptocurrency Monero coin. During this connection, the host was observed passing Monero credentials, activity which parallels similar mining operations observed on other customer networks that had been compromised by the MyKings botnet.

Although mining activity may not pose an immediate or urgent concern for security unauthorized cryptomining on devices can result in detrimental consequences, such as compromised hardware integrity, elevated energy costs, and reduced productivity, and even potential involvement in money laundering.

Figure 3: Event breach log showing details of the connection to the other.xmrpool[.]ru endpoint associated with cryptocurrency mining activity.

Conclusion

Detecting future iterations of the MyKings botnet will likely demand a shift away from an overreliance on traditional rules and signatures and lists of “known bads”, instead requiring organizations to employ AI-driven technology that can identify suspicious activity that represents a deviation from previously established patterns of life.

Despite the diverse range of payloads, malicious endpoints, and intricate activities that constitute a typical MyKing botnet compromise, Darktrace was able successfully detect multiple critical phases within the MyKings kill chain. Given the evolving nature of the MyKings botnet, it is highly probable the botnet will continue to expand and adapt, leveraging new tactics and technologies. By adopting Darktrace’s product of suites, including Darktrace DETECT, organizations are well-positioned to identify these evolving threats as soon as they emerge and, when coupled with the autonomous response technology of Darktrace RESPOND, threats like the MyKings botnet can be stopped in their tracks before they can achieve their ultimate goals.

Credit to: Oluwatosin Aturaka, Analyst Team Lead, Cambridge, Adam Potter, Cyber Analyst

Appendix

IoC Table

IoC - Type - Description + Confidence

162.216.150[.]108- IP - C2 Infrastructure

103.145.106[.]242 - IP - C2 Infrastructure

137.175.56[.]104 - IP - C2 Infrastructure

138.197.152[.]201 - IP - C2 Infrastructure

139.59.74[.]135 - IP - C2 Infrastructure

pc.pc0416[.]xyz - Domain - C2 Infrastructure (DGA)

other.xmrpool[.]ru - Domain - Cryptomining Endpoint

xmrpool[.]ru - Domain - Cryptomining Endpoint

103.145.106[.]55 - IP - Cryptomining Endpoint

ntuser[.]rar - Zipped File - Payload

/xmr1025[.]rar - Zipped File - Payload

/20201117[.]rar - Zipped File - Payload

wmi[.]txt - File - Payload

u[.]exe - Executable File - Payload

back[.]txt - File - Payload

upsupx2[.]exe - Executable File - Payload

cmd[.]txt - File - Payload

power[.]txt - File - Payload

ups[.]html - File - Payload

xmr1025.rar - Zipped File - Payload

171.91.76[.]31- IP - Possible Initial Compromise Endpoint

www[.]back0314[.]ru - Domain - Probable C2 Infrastructure

107.148.239[.]111 - IP - Probable C2 Infrastructure

194.67.71[.]99 - IP- Probable C2 Infrastructure

Darktrace DETECT Model Breaches

  • Device / Initial Breach Chain Compromise
  • Anomalous File / Masqueraded File Transfer (x37)
  • Compromise / Large DNS Volume for Suspicious Domain
  • Compromise / Fast Beaconing to DGA
  • Device / Large Number of Model Breaches
  • Anomalous File / Multiple EXE from Rare External Locations (x30)
  • Compromise / Beacon for 4 Days (x2)
  • Anomalous Server Activity / New User Agent from Internet Facing System
  • Anomalous Connection / New User Agent to IP Without Hostname
  • Anomalous Server Activity / New Internet Facing System
  • Anomalous File / EXE from Rare External Location (x37)
  • Device / Large Number of Connections to New Endpoints
  • Anomalous Server Activity / Server Activity on New Non-Standard Port (x3)
  • Device / Threat Indicator (x3)
  • Unusual Activity / Unusual External Activity
  • Compromise / Crypto Currency Mining Activity (x37)
  • Compliance / Internet Facing SQL Server
  • Device / Anomalous Scripts Download Followed By Additional Packages
  • Device / New User Agent

MITRE ATT&CK Mapping

ATT&CK Technique - Technique ID

Reconnaissance – T1595.002 Vulnerability Scanning

Resource Development – T1608 Stage Capabilities

Resource Development – T1588.001 Malware

Initial Access – T1190 Exploit Public-Facing Application

Command and Control – T15568.002 Domain Generated Algorithms

Command and Control – T1571 Non-Standard Port

Execution – T1047 Windows Management Instrumentation

Execution – T1059.001 Command and Scripting Interpreter

Persistence – T1542.003 Pre-OS Boot

Impact – T1496 Resource Hijacking

References

[1] https://www.binarydefense.com/resources/threat-watch/mykings-botnet-is-growing-and-remains-under-the-radar/

[2] https://therecord.media/a-malware-botnet-has-made-more-than-24-7-million-since-2019

[3] https://www.darktrace.com/blog/outlaw-returns-uncovering-returning-features-and-new-tactics

[4] https://www.sophos.com/en-us/medialibrary/pdfs/technical-papers/sophoslabs-uncut-mykings-report.pdf

[5] https://www.antiy.com/response/20190822.html

[6] https://ethicaldebuggers.com/mykings-botnet/

[7] https://ethicaldebuggers.com/mykings-botnet/

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Oluwatosin Aturaka
Analyst Team Lead, Cambridge

More in this series

No items found.

Blog

/

/

May 8, 2025

Anomaly-based threat hunting: Darktrace's approach in action

person working on laptopDefault blog imageDefault blog image

What is threat hunting?

Threat hunting in cybersecurity involves proactively and iteratively searching through networks and datasets to detect threats that evade existing automated security solutions. It is an important component of a strong cybersecurity posture.

There are several frameworks that Darktrace analysts use to guide how threat hunting is carried out, some of which are:

  • MITRE Attack
  • Tactics, Techniques, Procedures (TTPs)
  • Diamond Model for Intrusion Analysis
  • Adversary, Infrastructure, Victims, Capabilities
  • Threat Hunt Model – Six Steps
  • Purpose, Scope, Equip, Plan, Execute, Feedback
  • Pyramid of Pain

These frameworks are important in baselining how to run a threat hunt. There are also a combination of different methods that allow defenders diversity– regardless of whether it is a proactive or reactive threat hunt. Some of these are:

  • Hypothesis-based threat hunting
  • Analytics-driven threat hunting
  • Automated/machine learning hunting
  • Indicator of Compromise (IoC) hunting
  • Victim-based threat hunting

Threat hunting with Darktrace

At its core, Darktrace relies on anomaly-based detection methods. It combines various machine learning types that allows it to characterize what constitutes ‘normal’, based on the analysis of many different measures of a device or actor’s behavior. Those types of learning are then curated into what are called models.

Darktrace models leverage anomaly detection and integrate outputs from Darktrace Deep Packet Inspection, telemetry inputs, and additional modules, creating tailored activity detection.

This dynamic understanding allows Darktrace to identify, with a high degree of precision, events or behaviors that are both anomalous and unlikely to be benign.  On top of machine learning models for detection, there is also the ability to change and create models showcasing the tool’s diversity. The Model Editor allows security teams to specify values, priorities, thresholds, and actions they want to detect. That means a team can create custom detection models based on specific use cases or business requirements. Teams can also increase the priority of existing detections based on their own risk assessments to their environment.

This level of dexterity is particularly useful when conducting a threat hunt. As described above, and in previous ‘Inside the SOC’ blogs such a threat hunt can be on a specific threat actor, specific sector, or a  hypothesis-based threat hunt combined with ‘experimenting’ with some of Darktrace’s models.

Conducting a threat hunt in the energy sector with experimental models

In Darktrace’s recent Threat Research report “AI & Cybersecurity: The state of cyber in UK and US energy sectors” Darktrace’s Threat Research team crafted hypothesis-driven threat hunts, building experimental models and investigating existing models to test them and detect malicious activity across Darktrace customers in the energy sector.

For one of the hunts, which hypothesised utilization of PerfectData software and multi-factor authentication (MFA) bypass to compromise user accounts and destruct data, an experimental model was created to detect a Software-as-a-Service (SaaS) user performing activity relating to 'PerfectData Software’, known to allow a threat actor to exfiltrate whole mailboxes as a PST file. Experimental model alerts caused by this anomalous activity were analyzed, in conjunction with existing SaaS and email-related models that would indicate a multi-stage attack in line with the hypothesis.

Whilst hunting, Darktrace researchers found multiple model alerts for this experimental model associated with PerfectData software usage, within energy sector customers, including an oil and gas investment company, as well as other sectors. Upon further investigation, it was also found that in June 2024, a malicious actor had targeted a renewable energy infrastructure provider via a PerfectData Software attack and demonstrated intent to conduct an Operational Technology (OT) attack.

The actor logged into Azure AD from a rare US IP address. They then granted Consent to ‘eM Client’ from the same IP. Shortly after, the actor granted ‘AddServicePrincipal’ via Azure to PerfectData Software. Two days later, the actor created a  new email rule from a London IP to move emails to an RSS Feed Folder, stop processing rules, and mark emails as read. They then accessed mail items in the “\Sent” folder from a malicious IP belonging to anonymization network,  Private Internet Access Virtual Private Network (PIA VPN) [1]. The actor then conducted mass email deletions, deleting multiple instances of emails with subject “[Name] shared "[Company Name] Proposal" With You” from the  “\Sent folder”. The emails’ subject suggests the email likely contains a link to file storage for phishing purposes. The mass deletion likely represented an attempt to obfuscate a potential outbound phishing email campaign.

The Darktrace Model Alert that triggered for the mass deletes of the likely phishing email containing a file storage link.
Figure 1: The Darktrace Model Alert that triggered for the mass deletes of the likely phishing email containing a file storage link.

A month later, the same user was observed downloading mass mLog CSV files related to proprietary and Operational Technology information. In September, three months after the initial attack, another mass download of operational files occurred by this actor, pertaining to operating instructions and measurements, The observed patience and specific file downloads seemingly demonstrated an intent to conduct or research possible OT attack vectors. An attack on OT could have significant impacts including operational downtime, reputational damage, and harm to everyday operations. Darktrace alerted the impacted customer once findings were verified, and subsequent actions were taken by the internal security team to prevent further malicious activity.

Conclusion

Harnessing the power of different tools in a security stack is a key element to cyber defense. The above hypothesis-based threat hunt and custom demonstrated intent to conduct an experimental model creation demonstrates different threat hunting approaches, how Darktrace’s approach can be operationalized, and that proactive threat hunting can be a valuable complement to traditional security controls and is essential for organizations facing increasingly complex threat landscapes.

Credit to Nathaniel Jones (VP, Security & AI Strategy, Field CISO at Darktrace) and Zoe Tilsiter (EMEA Consultancy Lead)

References

  1. https://spur.us/context/191.96.106.219

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO

Blog

/

/

May 6, 2025

Combatting the Top Three Sources of Risk in the Cloud

woman working on laptopDefault blog imageDefault blog image

With cloud computing, organizations are storing data like intellectual property, trade secrets, Personally Identifiable Information (PII), proprietary code and statistics, and other sensitive information in the cloud. If this data were to be accessed by malicious actors, it could incur financial loss, reputational damage, legal liabilities, and business disruption.

Last year data breaches in solely public cloud deployments were the most expensive type of data breach, with an average of $5.17 million USD, a 13.1% increase from the year before.

So, as cloud usage continues to grow, the teams in charge of protecting these deployments must understand the associated cybersecurity risks.

What are cloud risks?

Cloud threats come in many forms, with one of the key types consisting of cloud risks. These arise from challenges in implementing and maintaining cloud infrastructure, which can expose the organization to potential damage, loss, and attacks.

There are three major types of cloud risks:

1. Misconfigurations

As organizations struggle with complex cloud environments, misconfiguration is one of the leading causes of cloud security incidents. These risks occur when cloud settings leave gaps between cloud security solutions and expose data and services to unauthorized access. If discovered by a threat actor, a misconfiguration can be exploited to allow infiltration, lateral movement, escalation, and damage.

With the scale and dynamism of cloud infrastructure and the complexity of hybrid and multi-cloud deployments, security teams face a major challenge in exerting the required visibility and control to identify misconfigurations before they are exploited.

Common causes of misconfiguration come from skill shortages, outdated practices, and manual workflows. For example, potential misconfigurations can occur around firewall zones, isolated file systems, and mount systems, which all require specialized skill to set up and diligent monitoring to maintain

2. Identity and Access Management (IAM) failures

IAM has only increased in importance with the rise of cloud computing and remote working. It allows security teams to control which users can and cannot access sensitive data, applications, and other resources.

Cybersecurity professionals ranked IAM skills as the second most important security skill to have, just behind general cloud and application security.

There are four parts to IAM: authentication, authorization, administration, and auditing and reporting. Within these, there are a lot of subcomponents as well, including but not limited to Single Sign-On (SSO), Two-Factor Authentication (2FA), Multi-Factor Authentication (MFA), and Role-Based Access Control (RBAC).

Security teams are faced with the challenge of allowing enough access for employees, contractors, vendors, and partners to complete their jobs while restricting enough to maintain security. They may struggle to track what users are doing across the cloud, apps, and on-premises servers.

When IAM is misconfigured, it increases the attack surface and can leave accounts with access to resources they do not need to perform their intended roles. This type of risk creates the possibility for threat actors or compromised accounts to gain access to sensitive company data and escalate privileges in cloud environments. It can also allow malicious insiders and users who accidentally violate data protection regulations to cause greater damage.

3. Cross-domain threats

The complexity of hybrid and cloud environments can be exploited by attacks that cross multiple domains, such as traditional network environments, identity systems, SaaS platforms, and cloud environments. These attacks are difficult to detect and mitigate, especially when a security posture is siloed or fragmented.  

Some attack types inherently involve multiple domains, like lateral movement and supply chain attacks, which target both on-premises and cloud networks.  

Challenges in securing against cross-domain threats often come from a lack of unified visibility. If a security team does not have unified visibility across the organization’s domains, gaps between various infrastructures and the teams that manage them can leave organizations vulnerable.

Adopting AI cybersecurity tools to reduce cloud risk

For security teams to defend against misconfigurations, IAM failures, and insecure APIs, they require a combination of enhanced visibility into cloud assets and architectures, better automation, and more advanced analytics. These capabilities can be achieved with AI-powered cybersecurity tools.

Such tools use AI and automation to help teams maintain a clear view of all their assets and activities and consistently enforce security policies.

Darktrace / CLOUD is a Cloud Detection and Response (CDR) solution that makes cloud security accessible to all security teams and SOCs by using AI to identify and correct misconfigurations and other cloud risks in public, hybrid, and multi-cloud environments.

It provides real-time, dynamic architectural modeling, which gives SecOps and DevOps teams a unified view of cloud infrastructures to enhance collaboration and reveal possible misconfigurations and other cloud risks. It continuously evaluates architecture changes and monitors real-time activity, providing audit-ready traceability and proactive risk management.

Real-time visibility into cloud assets and architectures built from network, configuration, and identity and access roles. In this unified view, Darktrace / CLOUD reveals possible misconfigurations and risk paths.
Figure 1: Real-time visibility into cloud assets and architectures built from network, configuration, and identity and access roles. In this unified view, Darktrace / CLOUD reveals possible misconfigurations and risk paths.

Darktrace / CLOUD also offers attack path modeling for the cloud. It can identify exposed assets and highlight internal attack paths to get a dynamic view of the riskiest paths across cloud environments, network environments, and between – enabling security teams to prioritize based on unique business risk and address gaps to prevent future attacks.  

Darktrace’s Self-Learning AI ensures continuous cloud resilience, helping teams move from reactive to proactive defense.

[related-resource]

Continue reading
About the author
Pallavi Singh
Product Marketing Manager, OT Security & Compliance
Your data. Our AI.
Elevate your network security with Darktrace AI
OSZAR »