Blog
/
Network
/
November 8, 2022

How Raccoon Stealer v2 Infects Systems

Learn about Raccoon Stealer v2's infection process and its implications for cybersecurity. Discover effective strategies to protect your systems.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Sam Lister
SOC Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
08
Nov 2022

Raccoon Stealer Malware

Since the release of version 2 of Raccoon Stealer in May 2022, Darktrace has observed huge volumes of Raccoon Stealer v2 infections across its client base. The info-stealer, which seeks to obtain and then exfiltrate sensitive data saved on users’ devices, displays a predictable pattern of network activity once it is executed. In this blog post, we will provide details of this pattern of activity, with the goal of helping security teams to recognize network-based signs of Raccoon Stealer v2 infection within their own networks. 

What is Raccoon Stealer?

Raccoon Stealer is a classic example of information-stealing malware, which cybercriminals typically use to gain possession of sensitive data saved in users’ browsers and cryptocurrency wallets. In the case of browsers, targeted data typically includes cookies, saved login details, and saved credit card details. In the case of cryptocurrency wallets (henceforth, ‘crypto-wallets’), targeted data typically includes public keys, private keys, and seed phrases [1]. Once sensitive browser and crypto-wallet data is in the hands of cybercriminals, it will likely be used to conduct harmful activities, such as identity theft, cryptocurrency theft, and credit card fraud.

How do you obtain Raccoon Stealer?

Like most info-stealers, Raccoon Stealer is purchasable. The operators of Raccoon Stealer sell Raccoon Stealer samples to their customers (called ‘affiliates’), who then use the info-stealer to gain possession of sensitive data saved on users’ devices. Raccoon Stealer affiliates typically distribute their samples via SEO-promoted websites providing free or cracked software. 

Is Raccoon Stealer Still Active?

On the 25th of March 2022, the operators of Raccoon Stealer announced that they would be suspending their operations because one of their core developers had been killed during the Russia-Ukraine conflict [2]. The presence of the hardcoded RC4 key ‘edinayarossiya’ (Russian for ‘United Russia’) within observed Raccoon Stealer v2 samples [3] provides potential evidence of the Raccoon Stealer operators’ allegiances.

Recent details shared by the US Department of Justice [4]/[5] indicate that it was in fact the arrest, rather than the death, of an operator which led the Raccoon Stealer team to suspend their operations [6]. As a result of the FBI, along with law enforcement partners in Italy and the Netherlands, dismantling Raccoon Stealer infrastructure in March 2022 [4], the Raccoon Stealer team was forced to build a new version of the info-stealer.  

On the 17th May 2022, the completion of v2 of the info-stealer was announced on the Raccoon Stealer Telegram channel [7].  Since its release in May 2022, Raccoon Stealer v2 has become extremely popular amongst cybercriminals. The prevalence of Raccoon Stealer v2 in the wider landscape has been reflected in Darktrace’s client base, with hundreds of infections being observed within client networks on a monthly basis.   

Since Darktrace’s SOC first saw a Raccoon Stealer v2 infection on the 22nd May 2022, the info-stealer has undergone several subtle changes. However, the info-stealer’s general pattern of network activity has remained essentially unchanged.  

How Does Raccoon Stealer v2 Infection Work?

A Raccoon Stealer v2 infection typically starts with a user attempting to download cracked or free software from an SEO-promoted website. Attempting to download software from one of these cracked/free software websites redirects the user’s browser (typically via several .xyz or .cfd endpoints) to a page providing download instructions. In May, June, and July, many of the patterns of download behavior observed by Darktrace’s SOC matched the pattern of behavior observed in a cracked software campaign reported by Avast in June [8].   

webpage whose download instructions led to a Raccoon Stealer v2
Figure 1: Above is a webpage whose download instructions led to a Raccoon Stealer v2 sample hosted on Discord CDN
example of a webpage whose download instructions led to a Raccoon Stealer v2
Figure 2: Above is an example of a webpage whose download instructions led to a Raccoon Stealer v2 sample hosted on Bitbucket
example of a webpage whose download instructions led to a Raccoon Stealer v2
Figure 3: Above is an example of a webpage whose download instructions led to a Raccoon Stealer v2 sample hosted on MediaFire

Following the instructions on the download instruction page causes the user’s device to download a password-protected RAR file from a file storage service such as ‘cdn.discordapp[.]com’, ‘mediafire[.]com’, ‘mega[.]nz’, or ‘bitbucket[.]org’. Opening the downloaded file causes the user’s device to execute Raccoon Stealer v2. 

The Event Log for an infected device,
Figure 4: The Event Log for an infected device, taken from Darktrace’s Threat Visualiser interface, shows a device contacting two cracked software websites (‘crackedkey[.]org’ and ‘crackedpc[.]co’) before contacting a webpage (‘premiumdownload[.]org) providing instructions to download Raccoon Stealer v2 from Bitbucket

Once Raccoon Stealer v2 is running on a device, it will make an HTTP POST request with the target URI ‘/’ and an unusual user-agent string (such as ‘record’, ‘mozzzzzzzzzzz’, or ‘TakeMyPainBack’) to a C2 server. This POST request consists of three strings: a machine GUID, a username, and a 128-bit RC4 key [9]. The posted data has the following form:

machineId=X | Y & configId=Z (where X is a machine GUID, Y is a username and Z is a 128-bit RC4 key) 

PCAP showing a device making an HTTP POST request with the User Agent header ‘record’ 
Figure 5:PCAP showing a device making an HTTP POST request with the User Agent header ‘record’ 
PCAP showing a device making an HTTP POST request with the User Agent header ‘mozzzzzzzzzzz’
Figure 6: PCAP showing a device making an HTTP POST request with the User Agent header ‘mozzzzzzzzzzz’
PCAP showing a device making an HTTP POST request with the User Agent header ‘TakeMyPainBack’
Figure 7: PCAP showing a device making an HTTP POST request with the User Agent header ‘TakeMyPainBack’

The C2 server responds to the info-stealer’s HTTP POST request with custom-formatted configuration details. These configuration details consist of fields which tell the info-stealer what files to download, what data to steal, and what target URI to use in its subsequent exfiltration POST requests. Below is a list of the fields Darktrace has observed in the configuration details retrieved by Raccoon Stealer v2 samples:

  • a ‘libs_mozglue’ field, which specifies a download address for a Firefox library named ‘mozglue.dll’
  • a ‘libs_nss3’ field, which specifies a download address for a Network System Services (NSS) library named ‘nss3.dll’ 
  • a ‘libs_freebl3’ field, which specifies a download address for a Network System Services (NSS) library named ‘freebl3.dll’
  • a ‘libs_softokn3’ field, which specifies a download address for a Network System Services (NSS) library named ‘softokn3.dll’
  • a ‘libs_nssdbm3’ field, which specifies a download address for a Network System Services (NSS) library named ‘nssdbm3.dll’
  • a ‘libs_sqlite3’ field, which specifies a download address for a SQLite command-line program named ‘sqlite3.dll’
  • a ‘libs_ msvcp140’ field, which specifies a download address for a Visual C++ runtime library named ‘msvcp140.dll’
  • a ‘libs_vcruntime140’ field, which specifies a download address for a Visual C++ runtime library named ‘vcruntime140.dll’
  • a ‘ldr_1’ field, which specifies the download address for a follow-up payload for the sample to download 
  • ‘wlts_X’ fields (where X is the name of a crypto-wallet application), which specify data for the sample to obtain from the specified crypto-wallet application
  • ‘ews_X’ fields (where X is the name of a crypto-wallet browser extension), which specify data for the sample to obtain from the specified browser extension
  • ‘xtntns_X’ fields (where X is the name of a password manager browser extension), which specify data for the sample to obtain from the specified browser extension
  • a ‘tlgrm_Telegram’ field, which specifies data for the sample to obtain from the Telegram Desktop application 
  • a ‘grbr_Desktop’ field, which specifies data within a local ‘Desktop’ folder for the sample to obtain 
  • a ‘grbr_Documents’ field, which specifies data within a local ‘Documents’ folder for the sample to obtain
  • a ‘grbr_Recent’ field, which specifies data within a local ‘Recent’ folder for the sample to obtain
  • a ‘grbr_Downloads’ field, which specifies data within a local ‘Downloads’ folder for the sample to obtain
  • a ‘sstmnfo_System Info.txt’ field, which specifies whether the sample should gather and exfiltrate a profile of the infected host 
  • a ‘scrnsht_Screenshot.jpeg’ field, which specifies whether the sample should take and exfiltrate screenshots of the infected host
  • a ‘token’ field, which specifies a 32-length string of hexadecimal digits for the sample to use as the target URI of its HTTP POST requests containing stolen data 

After retrieving its configuration data, Raccoon Stealer v2 downloads the library files specified in the ‘libs_’ fields. Unusual user-agent strings (such as ‘record’, ‘qwrqrwrqwrqwr’, and ‘TakeMyPainBack’) are used in the HTTP GET requests for these library files. In all Raccoon Stealer v2 infections seen by Darktrace, the paths of the URLs specified in the ‘libs_’ fields have the following form:

/aN7jD0qO6kT5bK5bQ4eR8fE1xP7hL2vK/X (where X is the name of the targeted DLL file) 

Advanced Search logs for an infected host
Figure 8: Advanced Search logs for an infected host, found on Darktrace’s Advanced Search interface, show a device making an HTTP POST request to retrieve configuration details, and then making HTTP GET requests with the User Agent header ‘record’ for DLL files
Advanced Search logs for an infected host
Figure 9: Advanced Search logs for an infected host, found on Darktrace’s Advanced Search interface, show a device making an HTTP POST request to retrieve configuration details, and then making HTTP GET requests with the User Agent header ‘qwrqrwrqwrqwr’ for DLL files
Advanced Search logs for an infected host
Figure 10: Advanced Search logs for an infected host, found on Darktrace’s Advanced Search interface, show a device making an HTTP POST request to retrieve configuration details, and then making HTTP GET requests with the User Agent header ‘TakeMyPainBack’ for DLL files

Raccoon Stealer v2 uses the DLLs which it downloads to gain access to sensitive data (such as cookies, credit card details, and login details) saved in browsers running on the infected host.  

Depending on the data provided in the configuration details, Raccoon Stealer v2 will typically seek to obtain, in addition to sensitive data saved in browsers, the following information:

  • Information about the Operating System and applications installed on the infected host
  • Data from specified crypto-wallet software
  • Data from specified crypto-wallet browser extensions
  • Data from specified local folders
  • Data from Telegram Desktop
  • Data from specified password manager browser extensions
  • Screenshots of the infected host 

Raccoon Stealer v2 exfiltrates the data which it obtains to its C2 server by making HTTP POST requests with unusual user-agent strings (such as ‘record’, ‘rc2.0/client’, ‘rqwrwqrqwrqw’, and ‘TakeMyPainBack’) and target URIs matching the 32-length string of hexadecimal digits specified in the ‘token’ field of the configuration details. The stolen data exfiltrated by Raccoon Stealer typically includes files named ‘System Info.txt’, ‘---Screenshot.jpeg’, ‘\cookies.txt’, and ‘\passwords.txt’. 

Advanced Search logs for an infected host
Figure 11: Advanced Search logs for an infected host, found on Darktrace’s Advanced Search interface, show a device retrieving configuration details via a POST request, downloading several DLLs, and then exfiltrating files named ‘System Info.txt’ and ‘---Screenshot.jpeg’
Advanced Search logs for an infected host
Figure 12: Advanced Search logs for an infected host, found on Darktrace’s Advanced Search interface, show a device retrieving configuration details via a POST request, downloading several DLLs, and then exfiltrating a file named ‘System Info.txt’ 
Advanced Search logs for an infected host
Figure 13: Advanced Search logs for an infected host, found on Darktrace’s Advanced Search interface, show a device retrieving configuration details via a POST request, downloading several DLLs, and then exfiltrating files named ‘System Info.txt’, ‘\cookies.txt’ and ‘\passwords.txt’
Advanced Search logs for an infected host
Figure 14: Advanced Search logs for an infected host, found on Darktrace’s Advanced Search interface, show a device retrieving configuration details via a POST request, downloading several DLLs, and then exfiltrating a file named ‘System Info.txt’

If a ‘ldr_1’ field is present in the retrieved configuration details, then Raccoon Stealer will complete its operation by downloading the binary file specified in the ‘ldr_1’ field. In all observed cases, the paths of the URLs specified in the ‘ldr_1’ field end in a sequence of digits, followed by ‘.bin’. The follow-up payload seems to vary between infections, likely due to this additional-payload feature being customizable by Raccoon Stealer affiliates. In many cases, the info-stealer, CryptBot, was delivered as the follow-up payload. 

Darktrace Coverage of Raccoon Stealer

Once a user’s device becomes infected with Raccoon Stealer v2, it will immediately start to communicate over HTTP with a C2 server. The HTTP requests made by the info-stealer have an empty Host header (although Host headers were used by early v2 samples) and highly unusual User Agent headers. When Raccoon Stealer v2 was first observed in May 2022, the user-agent string ‘record’ was used in its HTTP requests. Since then, it appears that the operators of Raccoon Stealer have made several changes to the user-agent strings used by the info-stealer,  likely in an attempt to evade signature-based detections. Below is a timeline of the changes to the info-stealer’s user-agent strings, as observed by Darktrace’s SOC:

  • 22nd May 2022: Samples seen using the user-agent string ‘record’
  • 2nd July 2022: Samples seen using the user-agent string ‘mozzzzzzzzzzz’
  • 29th July 2022: Samples seen using the user-agent string ‘rc2.0/client’
  • 10th August 2022: Samples seen using the user-agent strings ‘qwrqrwrqwrqwr’ and ‘rqwrwqrqwrqw’
  • 16th Sep 2022: Samples seen using the user-agent string ‘TakeMyPainBack’

The presence of these highly unusual user-agent strings within infected devices’ HTTP requests causes the following Darktrace DETECT/Network models to breach:

  • Device / New User Agent
  • Device / New User Agent and New IP
  • Anomalous Connection / New User Agent to IP Without Hostname
  • Device / Three or More New User Agents

These DETECT models look for devices making HTTP requests with unusual user-agent strings, rather than specific user-agent strings which are known to be malicious. This method of detection enables the models to continually identify Raccoon Stealer v2 HTTP traffic, despite the changes made to the info-stealer’s user-agent strings.   

After retrieving configuration details from a C2 server, Raccoon Stealer v2 samples make HTTP GET requests for several DLL libraries. Since these GET requests are directed towards highly unusual IP addresses, the downloads of the DLLs cause the following DETECT models to breach:

  • Anomalous File / EXE from Rare External Location
  • Anomalous File / Script from Rare External Location
  • Anomalous File / Multiple EXE from Rare External Locations

Raccoon Stealer v2 samples send data to their C2 server via HTTP POST requests with an absent Host header. Since these POST requests lack a Host header and have a highly unusual destination IP, their occurrence causes the following DETECT model to breach:

  • Anomalous Connection / Posting HTTP to IP Without Hostname

Certain Raccoon Stealer v2 samples download (over HTTP) a follow-up payload once they have exfiltrated data. Since the target URIs of the HTTP GET requests made by v2 samples end in a sequence of digits followed by ‘.bin’, the samples’ downloads of follow-up payloads cause the following DETECT model to breach:

  • Anomalous File / Numeric File Download

If Darktrace RESPOND/Network is configured within a customer’s environment, then Raccoon Stealer v2 activity should cause the following inhibitive actions to be autonomously taken on infected systems: 

  • Enforce pattern of life — This action results in a device only being able to make connections which are normal for it to make
  • Enforce group pattern of life — This action results in a device only being able to make connections which are normal for it or any of its peers to make
  • Block matching connections — This action results in a device being unable to make connections to particular IP/Port pairs
  • Block all outgoing traffic — This action results in a device being unable to make any connections 
The Event Log for an infected device
Figure 15: The Event Log for an infected device, taken from Darktrace’s Threat Visualiser interface, shows Darktrace RESPOND taking inhibitive actions in response to the HTTP activities of a Raccoon Stealer v2 sample downloaded from MediaFire

Given that Raccoon Stealer v2 infections move extremely fast, with the time between initial infection and data exfiltration sometimes less than a minute, the availability of Autonomous Response technology such as Darktrace RESPOND is vital for the containment of Raccoon Stealer v2 infections.  

Timeline of Darktrace stopping raccoon stealer.
Figure 16: Figure displaying the steps of a Raccoon Stealer v2 infection, along with the corresponding Darktrace detections

Conclusion

Since the release of Raccoon Stealer v2 back in 2022, the info-stealer has relentlessly infected the devices of unsuspecting users. Once the info-stealer infects a user’s device, it retrieves and then exfiltrates sensitive information within a matter of minutes. The distinctive pattern of network behavior displayed by Raccoon Stealer v2 makes the info-stealer easy to spot. However, the changes which the Raccoon Stealer operators make to the User Agent headers of the info-stealer’s HTTP requests make anomaly-based methods key for the detection of the info-stealer’s HTTP traffic. The operators of Raccoon Stealer can easily change the superficial features of their malware’s C2 traffic, however, they cannot easily change the fact that their malware causes highly unusual network behavior. Spotting this behavior, and then autonomously responding to it, is likely the best bet which organizations have at stopping a Raccoon once it gets inside their networks.  

Thanks to the Threat Research Team for its contributions to this blog.

References

[1] https://www.microsoft.com/security/blog/2022/05/17/in-hot-pursuit-of-cryware-defending-hot-wallets-from-attacks/

[2] https://twitter.com/3xp0rtblog/status/1507312171914461188

[3] https://www.esentire.com/blog/esentire-threat-intelligence-malware-analysis-raccoon-stealer-v2-0

[4] https://www.justice.gov/usao-wdtx/pr/newly-unsealed-indictment-charges-ukrainian-national-international-cybercrime-operation

[5] https://www.youtube.com/watch?v=Fsz6acw-ZJ

[6] https://riskybiznews.substack.com/p/raccoon-stealer-dev-didnt-die-in

[7] https://medium.com/s2wblog/raccoon-stealer-is-back-with-a-new-version-5f436e04b20d

[8] https://blog.avast.com/fakecrack-campaign

[9] https://blog.sekoia.io/raccoon-stealer-v2-part-2-in-depth-analysis/

Appendices

MITRE ATT&CK Mapping

Resource Development

• T1588.001 — Obtain Capabilities: Malware

• T1608.001 — Stage Capabilities: Upload Malware

• T1608.005 — Stage Capabilities: Link Target

• T1608.006 — Stage Capabilities: SEO Poisoning

Execution

•  T1204.002 — User Execution: Malicious File

Credential Access

• T1555.003 — Credentials from Password Stores:  Credentials from Web Browsers

• T1555.005 — Credentials from Password Stores:  Password Managers

• T1552.001 — Unsecured Credentials: Credentials  In Files

Command and Control

•  T1071.001 — Application Layer Protocol: Web Protocols

•  T1105 — Ingress Tool Transfer

IOCS

Type

IOC

Description

User-Agent String

record

String used in User Agent header of  Raccoon Stealer v2’s HTTP requests

User-Agent  String

mozzzzzzzzzzz

String used inUser Agent header of Raccoon Stealer v2’s HTTP requests

User-Agent String

rc2.0/client

String used in User Agent header of  Raccoon Stealer v2’s HTTP requests

User-Agent  String

qwrqrwrqwrqwr

String used in  User Agent header of Raccoon Stealer v2’s HTTP requests

User-Agent String

rqwrwqrqwrqw

String used in User Agent header of  Raccoon Stealer v2’s HTTP requests

User-Agent  String

TakeMyPainBack

String used in  User Agent header of Raccoon Stealer v2’s HTTP requests

Domain Name

brain-lover[.]xyz  

Raccoon Stealer v2 C2 infrastructure

Domain  Name

polar-gift[.]xyz

Raccoon Stealer  v2 C2 infrastructure

Domain Name

cool-story[.]xyz

Raccoon Stealer v2 C2 infrastructure

Domain  Name

fall2sleep[.]xyz

Raccoon Stealer  v2 C2 infrastructure

Domain Name

broke-bridge[.]xyz

Raccoon Stealer v2 C2 infrastructure

Domain  Name

use-freedom[.]xyz

Raccoon Stealer  v2 C2 infrastructure

Domain Name

just-trust[.]xyz

Raccoon Stealer v2 C2 infrastructure

Domain  Name

soft-viper[.]site

Raccoon Stealer  v2 C2 infrastructure

Domain Name

tech-lover[.]xyz

Raccoon Stealer v2 C2 infrastructure

Domain  Name

heal-brain[.]xyz

Raccoon Stealer  v2 C2 infrastructure

Domain Name

love-light[.]xyz

Raccoon Stealer v2 C2 infrastructure

IP  Address

104.21.80[.]14

Raccoon Stealer  v2 C2 infrastructure

IP Address

107.152.46[.]84

Raccoon Stealer v2 C2 infrastructure

IP  Address

135.181.147[.]255

Raccoon Stealer  v2 C2 infrastructure

IP Address

135.181.168[.]157

Raccoon Stealer v2 C2 infrastructure

IP  Address

138.197.179[.]146

Raccoon Stealer  v2 C2 infrastructure

IP Address

141.98.169[.]33

Raccoon Stealer v2 C2 infrastructure

IP  Address

146.19.170[.]100

Raccoon Stealer  v2 C2 infrastructure

IP Address

146.19.170[.]175

Raccoon Stealer v2 C2 infrastructure

IP  Address

146.19.170[.]98

Raccoon Stealer  v2 C2 infrastructure

IP Address

146.19.173[.]33

Raccoon Stealer v2 C2 infrastructure

IP  Address

146.19.173[.]72

Raccoon Stealer  v2 C2 infrastructure

IP Address

146.19.247[.]175

Raccoon Stealer v2 C2 infrastructure

IP  Address

146.19.247[.]177

Raccoon Stealer  v2 C2 infrastructure

IP Address

146.70.125[.]95

Raccoon Stealer v2 C2 infrastructure

IP  Address

152.89.196[.]234

Raccoon Stealer  v2 C2 infrastructure

IP Address

165.225.120[.]25

Raccoon Stealer v2 C2 infrastructure

IP  Address

168.100.10[.]238

Raccoon Stealer  v2 C2 infrastructure

IP Address

168.100.11[.]23

Raccoon Stealer v2 C2 infrastructure

IP  Address

168.100.9[.]234

Raccoon Stealer  v2 C2 infrastructure

IP Address

170.75.168[.]118

Raccoon Stealer v2 C2 infrastructure

IP  Address

172.67.173[.]14

Raccoon Stealer  v2 C2 infrastructure

IP Address

172.86.75[.]189

Raccoon Stealer v2 C2 infrastructure

IP  Address

172.86.75[.]33

Raccoon Stealer  v2 C2 infrastructure

IP Address

174.138.15[.]216

Raccoon Stealer v2 C2 infrastructure

IP  Address

176.124.216[.]15

Raccoon Stealer  v2 C2 infrastructure

IP Address

185.106.92[.]14

Raccoon Stealer v2 C2 infrastructure

IP  Address

185.173.34[.]161

Raccoon Stealer  v2 C2 infrastructure

IP Address

185.173.34[.]161  

Raccoon Stealer v2 C2 infrastructure

IP  Address

185.225.17[.]198

Raccoon Stealer  v2 C2 infrastructure

IP Address

185.225.19[.]190

Raccoon Stealer v2 C2 infrastructure

IP  Address

185.225.19[.]229

Raccoon Stealer  v2 C2 infrastructure

IP Address

185.53.46[.]103

Raccoon Stealer v2 C2 infrastructure

IP  Address

185.53.46[.]76

Raccoon Stealer  v2 C2 infrastructure

IP Address

185.53.46[.]77

Raccoon Stealer v2 C2 infrastructure

IP  Address

188.119.112[.]230

Raccoon Stealer  v2 C2 infrastructure

IP Address

190.117.75[.]91

Raccoon Stealer v2 C2 infrastructure

IP  Address

193.106.191[.]182

Raccoon Stealer  v2 C2 infrastructure

IP Address

193.149.129[.]135

Raccoon Stealer v2 C2 infrastructure

IP  Address

193.149.129[.]144

Raccoon Stealer  v2 C2 infrastructure

IP Address

193.149.180[.]210

Raccoon Stealer v2 C2 infrastructure

IP  Address

193.149.185[.]192

Raccoon Stealer  v2 C2 infrastructure

IP Address

193.233.193[.]50

Raccoon Stealer v2 C2 infrastructure

IP  Address

193.43.146[.]138

Raccoon Stealer  v2 C2 infrastructure

IP Address

193.43.146[.]17

Raccoon Stealer v2 C2 infrastructure

IP  Address

193.43.146[.]192

Raccoon Stealer  v2 C2 infrastructure

IP Address

193.43.146[.]213

Raccoon Stealer v2 C2 infrastructure

IP  Address

193.43.146[.]214

Raccoon Stealer  v2 C2 infrastructure

IP Address

193.43.146[.]215

Raccoon Stealer v2 C2 infrastructure

IP  Address

193.43.146[.]26

Raccoon Stealer  v2 C2 infrastructure

IP Address

193.43.146[.]45

Raccoon Stealer v2 C2 infrastructure

IP  Address

193.56.146[.]177

Raccoon Stealer  v2 C2 infrastructure

IP Address

194.180.174[.]180

Raccoon Stealer v2 C2 infrastructure

IP  Address

195.201.148[.]250

Raccoon Stealer  v2 C2 infrastructure

IP Address

206.166.251[.]156

Raccoon Stealer v2 C2 infrastructure

IP  Address

206.188.196[.]200

Raccoon Stealer  v2 C2 infrastructure

IP Address

206.53.53[.]18

Raccoon Stealer v2 C2 infrastructure

IP  Address

207.154.195[.]173

Raccoon Stealer  v2 C2 infrastructure

IP Address

213.252.244[.]2

Raccoon Stealer v2 C2 infrastructure

IP  Address

38.135.122[.]210

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.10.20[.]248

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.11.19[.]99

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.133.216[.]110

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.133.216[.]145

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.133.216[.]148

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.133.216[.]249

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.133.216[.]71

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.140.146[.]169

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.140.147[.]245

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.142.212[.]100

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.142.213[.]24

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.142.215[.]91

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.142.215[.]91  

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.142.215[.]92

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.144.29[.]18

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.144.29[.]243

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.15.156[.]11

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.15.156[.]2

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.15.156[.]31

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.15.156[.]31

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.150.67[.]156

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.153.230[.]183

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.153.230[.]228

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.159.251[.]163

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.159.251[.]164

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.61.136[.]67

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.61.138[.]162

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.67.228[.]8

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.67.231[.]202

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.67.34[.]152

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.67.34[.]234

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.8.144[.]187

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.8.144[.]54

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.8.144[.]55

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.8.145[.]174

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.8.145[.]83

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.8.147[.]39

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.8.147[.]79

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.84.0.152

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.86.86[.]78

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.89.54[.]110

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.89.54[.]110

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.89.54[.]95

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.89.55[.]115

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.89.55[.]117

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.89.55[.]193

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.89.55[.]198

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.89.55[.]20

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.89.55[.]84

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.92.156[.]150

Raccoon Stealer  v2 C2 infrastructure

IP Address

5.182.36[.]154

Raccoon Stealer v2 C2 infrastructure

IP  Address

5.182.36[.]230

Raccoon Stealer  v2 C2 infrastructure

IP Address

5.182.36[.]231

Raccoon Stealer v2 C2 infrastructure

IP  Address

5.182.36[.]232

Raccoon Stealer  v2 C2 infrastructure

IP Address

5.182.36[.]233

Raccoon Stealer v2 C2 infrastructure

IP  Address

5.182.39[.]34

Raccoon Stealer  v2 C2 infrastructure

IP Address

5.182.39[.]74

Raccoon Stealer v2 C2 infrastructure

IP  Address

5.182.39[.]75

Raccoon Stealer  v2 C2 infrastructure

IP Address

5.182.39[.]77

Raccoon Stealer v2 C2 infrastructure

IP  Address

5.252.118[.]33

Raccoon Stealer  v2 C2 infrastructure

IP Address

5.252.176[.]62

Raccoon Stealer v2 C2 infrastructure

IP  Address

5.252.177[.]217

Raccoon Stealer  v2 C2 infrastructure

IP Address

5.252.177[.]234

Raccoon Stealer v2 C2 infrastructure

IP  Address

5.252.177[.]43

Raccoon Stealer  v2 C2 infrastructure

IP Address

5.252.177[.]47

Raccoon Stealer v2 C2 infrastructure

IP  Address

5.252.177[.]92

Raccoon Stealer  v2 C2 infrastructure

IP Address

5.252.177[.]98

Raccoon Stealer v2 C2 infrastructure

IP  Address

5.252.22[.]142

Raccoon Stealer  v2 C2 infrastructure

IP Address

5.252.23[.]100

Raccoon Stealer v2 C2 infrastructure

IP  Address

5.252.23[.]25

Raccoon Stealer  v2 C2 infrastructure

IP Address

5.252.23[.]76

Raccoon Stealer v2 C2 infrastructure

IP  Address

51.195.166[.]175

Raccoon Stealer  v2 C2 infrastructure

IP Address

51.195.166[.]176

Raccoon Stealer v2 C2 infrastructure

IP  Address

51.195.166[.]194

Raccoon Stealer  v2 C2 infrastructure

IP Address

51.81.143[.]169

Raccoon Stealer v2 C2 infrastructure

IP  Address

62.113.255[.]110

Raccoon Stealer  v2 C2 infrastructure

IP Address

65.109.3[.]107

Raccoon Stealer v2 C2 infrastructure

IP  Address

74.119.192[.]56

Raccoon Stealer  v2 C2 infrastructure

IP Address

74.119.192[.]73

Raccoon Stealer v2 C2 infrastructure

IP  Address

77.232.39[.]101

Raccoon Stealer  v2 C2 infrastructure

IP Address

77.73.133[.]0

Raccoon Stealer v2 C2 infrastructure

IP  Address

77.73.133[.]4

Raccoon Stealer  v2 C2 infrastructure

IP Address

77.73.134[.]45

Raccoon Stealer v2 C2 infrastructure

IP  Address

77.75.230[.]25

Raccoon Stealer  v2 C2 infrastructure

IP Address

77.75.230[.]39

Raccoon Stealer v2 C2 infrastructure

IP  Address

77.75.230[.]70

Raccoon Stealer  v2 C2 infrastructure

IP Address

77.75.230[.]93

Raccoon Stealer v2 C2 infrastructure

IP  Address

77.91.100[.]101

Raccoon Stealer  v2 C2 infrastructure

IP Address

77.91.102[.]12

Raccoon Stealer v2 C2 infrastructure

IP  Address

77.91.102[.]230

Raccoon Stealer  v2 C2 infrastructure

IP Address

77.91.102[.]44

Raccoon Stealer v2 C2 infrastructure

IP  Address

77.91.102[.]57

Raccoon Stealer  v2 C2 infrastructure

IP Address

77.91.102[.]84

Raccoon Stealer v2 C2 infrastructure

IP  Address

77.91.103[.]31

Raccoon Stealer  v2 C2 infrastructure

IP Address

77.91.73[.]154

Raccoon Stealer v2 C2 infrastructure

IP  Address

77.91.73[.]213

Raccoon Stealer  v2 C2 infrastructure

IP Address

77.91.73[.]32

Raccoon Stealer v2 C2 infrastructure

IP  Address

77.91.74[.]67

Raccoon Stealer  v2 C2 infrastructure

IP Address

78.159.103[.]195

Raccoon Stealer v2 C2 infrastructure

IP  Address

78.159.103[.]196

Raccoon Stealer  v2 C2 infrastructure

IP Address

80.66.87[.]23

Raccoon Stealer v2 C2 infrastructure

IP  Address

80.66.87[.]28

Raccoon Stealer  v2 C2 infrastructure

IP Address

80.71.157[.]112

Raccoon Stealer v2 C2 infrastructure

IP  Address

80.71.157[.]138

Raccoon Stealer  v2 C2 infrastructure

IP Address

80.92.204[.]202

Raccoon Stealer v2 C2 infrastructure

IP  Address

87.121.52[.]10

Raccoon Stealer  v2 C2 infrastructure

IP Address

88.119.175[.]187

Raccoon Stealer v2 C2 infrastructure

IP  Address

89.185.85[.]53

Raccoon Stealer  v2 C2 infrastructure

IP Address

89.208.107[.]42

Raccoon Stealer v2 C2 infrastructure

IP  Address

89.39.106[.]78

Raccoon Stealer  v2 C2 infrastructure

IP Address

91.234.254[.]126

Raccoon Stealer v2 C2 infrastructure

IP  Address

94.131.104[.]16

Raccoon Stealer  v2 C2 infrastructure

IP Address

94.131.104[.]17

Raccoon Stealer v2 C2 infrastructure

IP  Address

94.131.104[.]18

Raccoon Stealer  v2 C2 infrastructure

IP Address

94.131.106[.]116

Raccoon Stealer v2 C2 infrastructure

IP  Address

94.131.106[.]224

Raccoon Stealer  v2 C2 infrastructure

IP Address

94.131.107[.]132

Raccoon Stealer v2 C2 infrastructure

IP  Address

94.131.107[.]138

Raccoon Stealer  v2 C2 infrastructure

IP Address

94.131.96[.]109

Raccoon Stealer v2 C2 infrastructure

IP  Address

94.131.97[.]129

Raccoon Stealer  v2 C2 infrastructure

IP Address

94.131.97[.]53

Raccoon Stealer v2 C2 infrastructure

IP  Address

94.131.97[.]56

Raccoon Stealer  v2 C2 infrastructure

IP Address

94.131.97[.]57

Raccoon Stealer v2 C2 infrastructure

IP  Address

94.131.98[.]5

Raccoon Stealer  v2 C2 infrastructure

IP Address

94.158.244[.]114

Raccoon Stealer v2 C2 infrastructure

IP  Address

94.158.244[.]119

Raccoon Stealer  v2 C2 infrastructure

IP Address

94.158.244[.]21

Raccoon Stealer v2 C2 infrastructure

IP  Address

94.158.247[.]24

Raccoon Stealer  v2 C2 infrastructure

IP Address

94.158.247[.]26

Raccoon Stealer v2 C2 infrastructure

IP  Address

94.158.247[.]30

Raccoon Stealer  v2 C2 infrastructure

IP Address

94.158.247[.]44

Raccoon Stealer v2 C2 infrastructure

IP  Address

95.216.109[.]16

Raccoon Stealer  v2 C2 infrastructure

IP Address

95.217.124[.]179

Raccoon Stealer v2 C2 infrastructure

URI

/aN7jD0qO6kT5bK5bQ4eR8fE1xP7hL2vK/mozglue.dll

URI used in  download of library file

URI

/aN7jD0qO6kT5bK5bQ4eR8fE1xP7hL2vK/nss3.dll

URI used in download of library file

URI

/aN7jD0qO6kT5bK5bQ4eR8fE1xP7hL2vK/freebl3.dll

URI used in  download of library file

URI

/aN7jD0qO6kT5bK5bQ4eR8fE1xP7hL2vK/softokn3.dll

URI used in download of library file

URI

/aN7jD0qO6kT5bK5bQ4eR8fE1xP7hL2vK/nssdbm3.dll

URI used in  download of library file

URI

/aN7jD0qO6kT5bK5bQ4eR8fE1xP7hL2vK/sqlite3.dll

URI used in download of library file

URI

/aN7jD0qO6kT5bK5bQ4eR8fE1xP7hL2vK/msvcp140.dll

URI used in  download of library file

URI

/aN7jD0qO6kT5bK5bQ4eR8fE1xP7hL2vK/vcruntime140.dll

URI used in download of library file

URI

/C9S2G1K6I3G8T3X7/56296373798691245143.bin

URI used in  download of follow-up payload

URI

/O6K3E4G6N9S8S1/91787438215733789009.bin

URI used in download of follow-up  payload

URI

/Z2J8J3N2S2Z6X2V3S0B5/45637662345462341.bin

URI used in  download of follow-up payload

URI

/rgd4rgrtrje62iuty/19658963328526236.bin

URI used in download of follow-up  payload

URI

/sd325dt25ddgd523/81852849956384.bin

URI used in  download of follow-up payload

URI

/B0L1N2H4R1N5I5S6/40055385413647326168.bin

URI used in download of follow-up  payload

URI

/F5Q8W3O3O8I2A4A4B8S8/31427748106757922101.bin

URI used in  download of follow-up payload

URI

/36141266339446703039.bin

URI used in download of follow-up  payload

URI

/wH0nP0qH9eJ6aA9zH1mN/1.bin

URI used in  download of follow-up payload

URI

/K2X2R1K4C6Z3G8L0R1H0/68515718711529966786.bin

URI used in download of follow-up  payload

URI

/C3J7N6F6X3P8I0I0M/17819203282122080878.bin

URI used in  download of follow-up payload

URI

/W9H1B8P3F2J2H2K7U1Y7G5N4C0Z4B/18027641.bin

URI used in download of follow-up  payload

URI

/P2T9T1Q6P7Y5J3D2T0N0O8V/73239348388512240560937.bin

URI used in  download of follow-up payload

URI

/W5H6O5P0E4Y6P8O1B9D9G0P9Y9G4/671837571800893555497.bin

URI used in download of follow-up  payload

URI

/U8P2N0T5R0F7G2J0/898040207002934180145349.bin

URI used in  download of follow-up payload

URI

/AXEXNKPSBCKSLMPNOMNRLUEPR/3145102300913020.bin

URI used in download of follow-up  payload

URI

/wK6nO2iM9lE7pN7e/7788926473349244.bin

URI used in  download of follow-up payload

URI

/U4N9B5X5F5K2A0L4L4T5/84897964387342609301.bin

URI used in download of follow-up  payload

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Sam Lister
SOC Analyst

More in this series

No items found.

Blog

/

/

May 14, 2025

Catching a RAT: How Darktrace Neutralized AsyncRAT

woman working on laptopDefault blog imageDefault blog image

What is a RAT?

As the proliferation of new and more advanced cyber threats continues, the Remote Access Trojan (RAT) remains a classic tool in a threat actor's arsenal. RATs, whether standardized or custom-built, enable attackers to remotely control compromised devices, facilitating a range of malicious activities.

What is AsyncRAT?

Since its first appearance in 2019, AsyncRAT has become increasingly popular among a wide range of threat actors, including cybercriminals and advanced persistent threat (APT) groups.

Originally available on GitHub as a legitimate tool, its open-source nature has led to widespread exploitation. AsyncRAT has been used in numerous campaigns, including prolonged attacks on essential US infrastructure, and has even reportedly penetrated the Chinese cybercriminal underground market [1] [2].

How does AsyncRAT work?

Original source code analysis of AsyncRAT demonstrates that once installed, it establishes persistence via techniques such as creating scheduled tasks or registry keys and uses SeDebugPrivilege to gain elevated privileges [3].

Its key features include:

  • Keylogging
  • File search
  • Remote audio and camera access
  • Exfiltration techniques
  • Staging for final payload delivery

These are generally typical functions found in traditional RATs. However, it also boasts interesting anti-detection capabilities. Due to the popularity of Virtual Machines (VM) and sandboxes for dynamic analysis, this RAT checks for the manufacturer via the WMI query 'Select * from Win32_ComputerSystem' and looks for strings containing 'VMware' and 'VirtualBox' [4].

Darktrace’s coverage of AsyncRAT

In late 2024 and early 2025, Darktrace observed a spike in AsyncRAT activity across various customer environments. Multiple indicators of post-compromise were detected, including devices attempting or successfully connecting to endpoints associated with AsyncRAT.

On several occasions, Darktrace identified a clear association with AsyncRAT through the digital certificates of the highlighted SSL endpoints. Darktrace’s Real-time Detection effectively identified and alerted on suspicious activities related to AsyncRAT. In one notable incident, Darktrace’s Autonomous Response promptly took action to contain the emerging threat posed by AsyncRAT.

AsyncRAT attack overview

On December 20, 2024, Darktrace first identified the use of AsyncRAT, noting a device successfully establishing SSL connections to the uncommon external IP 185.49.126[.]50 (AS199654 Oxide Group Limited) via port 6606. The IP address appears to be associated with AsyncRAT as flagged by open-source intelligence (OSINT) sources [5]. This activity triggered the device to alert the ‘Anomalous Connection / Rare External SSL Self-Signed' model.

Model alert in Darktrace / NETWORK showing the repeated SSL connections to a rare external Self-Signed endpoint, 185.49.126[.]50.
Figure 1: Model alert in Darktrace / NETWORK showing the repeated SSL connections to a rare external Self-Signed endpoint, 185.49.126[.]50.

Following these initial connections, the device was observed making a significantly higher number of connections to the same endpoint 185.49.126[.]50 via port 6606 over an extended period. This pattern suggested beaconing activity and triggered the 'Compromise/Beaconing Activity to External Rare' model alert.

Further analysis of the original source code, available publicly, outlines the default ports used by AsyncRAT clients for command-and-control (C2) communications [6]. It reveals that port 6606 is the default port for creating a new AsyncRAT client. Darktrace identified both the Certificate Issuer and the Certificate Subject as "CN=AsyncRAT Server". This SSL certificate encrypts the packets between the compromised system and the server. These indicators of compromise (IoCs) detected by Darktrace further suggest that the device was successfully connecting to a server associated with AsyncRAT.

Model alert in Darktrace / NETWORK displaying the Digital Certificate attributes, IP address and port number associated with AsyncRAT.
Figure 2: Model alert in Darktrace / NETWORK displaying the Digital Certificate attributes, IP address and port number associated with AsyncRAT.
Darktrace’s detection of repeated connections to the suspicious IP address 185.49.126[.]50 over port 6606, indicative of beaconing behavior.
Figure 3: Darktrace’s detection of repeated connections to the suspicious IP address 185.49.126[.]50 over port 6606, indicative of beaconing behavior.
Darktrace's Autonomous Response actions blocking the suspicious IP address, 185.49.126[.]50.
Figure 4: Darktrace's Autonomous Response actions blocking the suspicious IP address, 185.49.126[.]50.

A few days later, the same device was detected making numerous connections to a different IP address, 195.26.255[.]81 (AS40021 NL-811-40021), via various ports including 2106, 6606, 7707, and 8808. Notably, ports 7707 and 8808 are also default ports specified in the original AsyncRAT source code [6].

Darktrace’s detection of connections to the suspicious endpoint 195.26.255[.]81, where the default ports (6606, 7707, and 8808) for AsyncRAT were observed.
Figure 5: Darktrace’s detection of connections to the suspicious endpoint 195.26.255[.]81, where the default ports (6606, 7707, and 8808) for AsyncRAT were observed.

Similar to the activity observed with the first endpoint, 185.49.126[.]50, the Certificate Issuer for the connections to 195.26.255[.]81 was identified as "CN=AsyncRAT Server". Further OSINT investigation confirmed associations between the IP address 195.26.255[.]81 and AsyncRAT [7].

Darktrace's detection of a connection to the suspicious IP address 195.26.255[.]81 and the domain name identified under the common name (CN) of a certificate as AsyncRAT Server
Figure 6: Darktrace's detection of a connection to the suspicious IP address 195.26.255[.]81 and the domain name identified under the common name (CN) of a certificate as AsyncRAT Server.

Once again, Darktrace's Autonomous Response acted swiftly, blocking the connections to 195.26.255[.]81 throughout the observed AsyncRAT activity.

Figure 7: Darktrace's Autonomous Response actions were applied against the suspicious IP address 195.26.255[.]81.

A day later, Darktrace again alerted to further suspicious activity from the device. This time, connections to the suspicious endpoint 'kashuub[.]com' and IP address 191.96.207[.]246 via port 8041 were observed. Further analysis of port 8041 suggests it is commonly associated with ScreenConnect or Xcorpeon ASIC Carrier Ethernet Transport [8]. ScreenConnect has been observed in recent campaign’s where AsyncRAT has been utilized [9]. Additionally, one of the ASN’s observed, namely ‘ASN Oxide Group Limited’, was seen in both connections to kashuub[.]com and 185.49.126[.]50.

This could suggest a parallel between the two endpoints, indicating they might be hosting AsyncRAT C2 servers, as inferred from our previous analysis of the endpoint 185.49.126[.]50 and its association with AsyncRAT [5]. OSINT reporting suggests that the “kashuub[.]com” endpoint may be associated with ScreenConnect scam domains, further supporting the assumption that the endpoint could be a C2 server.

Darktrace’s Autonomous Response technology was once again able to support the customer here, blocking connections to “kashuub[.]com”. Ultimately, this intervention halted the compromise and prevented the attack from escalating or any sensitive data from being exfiltrated from the customer’s network into the hands of the threat actors.

Darktrace’s Autonomous Response applied a total of nine actions against the IP address 191.96.207[.]246 and the domain 'kashuub[.]com', successfully blocking the connections.
Figure 8: Darktrace’s Autonomous Response applied a total of nine actions against the IP address 191.96.207[.]246 and the domain 'kashuub[.]com', successfully blocking the connections.

Due to the popularity of this RAT, it is difficult to determine the motive behind the attack; however, from existing knowledge of what the RAT does, we can assume accessing and exfiltrating sensitive customer data may have been a factor.

Conclusion

While some cybercriminals seek stability and simplicity, openly available RATs like AsyncRAT provide the infrastructure and open the door for even the most amateur threat actors to compromise sensitive networks. As the cyber landscape continually shifts, RATs are now being used in all types of attacks.

Darktrace’s suite of AI-driven tools provides organizations with the infrastructure to achieve complete visibility and control over emerging threats within their network environment. Although AsyncRAT’s lack of concealment allowed Darktrace to quickly detect the developing threat and alert on unusual behaviors, it was ultimately Darktrace Autonomous Response's consistent blocking of suspicious connections that prevented a more disruptive attack.

Credit to Isabel Evans (Cyber Analyst), Priya Thapa (Cyber Analyst) and Ryan Traill (Analyst Content Lead)

Continue reading
About the author
Isabel Evans
Cyber Analyst

Blog

/

/

May 13, 2025

Revolutionizing OT Risk Prioritization with Darktrace 6.3

man in hard hat on tabletDefault blog imageDefault blog image

Powering smarter protection for industrial systems

In industrial environments, security challenges are deeply operational. Whether you’re running a manufacturing line, a power grid, or a semiconductor fabrication facility (fab), you need to know: What risks can truly disrupt my operations, and what should I focus on first?

Teams need the right tools to shift from reactive defense, constantly putting out fires, to proactively thinking about their security posture. However, most OT teams are stuck using IT-centric tools that don’t speak the language of industrial systems, are consistently overwhelmed with static CVE lists, and offer no understanding of OT-specific protocols. The result? Compliance gaps, siloed insights, and risk models that don’t reflect real-world exposure, making risk prioritization seem like a luxury.

Darktrace / OT 6.3 was built in direct response to these challenges. Developed in close collaboration with OT operators and engineers, this release introduces powerful upgrades that deliver the context, visibility, and automation security teams need, without adding complexity. It’s everything OT defenders need to protect critical operations in one platform that understands the language of industrial systems.

additions to darktrace / ot 6/3

Contextual risk modeling with smarter Risk Scoring

Darktrace / OT 6.3 introduces major upgrades to OT Risk Management, helping teams move beyond generic CVE lists with AI-driven risk scoring and attack path modeling.

By factoring in real-world exploitability, asset criticality, and operational context, this release delivers a more accurate view of what truly puts critical systems at risk.

The platform now integrates:

  • CISA’s Known Exploited Vulnerabilities (KEV) database
  • End-of-life status for legacy OT devices
  • Firewall misconfiguration analysis
  • Incident response plan alignment

Most OT environments are flooded with vulnerability data that lacks context. CVE scores often misrepresent risk by ignoring how threats move through the environment or whether assets are even reachable. Firewalls are frequently misconfigured or undocumented, and EOL (End of Life) devices, some of the most vulnerable, often go untracked.

Legacy tools treat these inputs in isolation. Darktrace unifies them, showing teams exactly which attack paths adversaries could exploit, mapped to the MITRE ATT&CK framework, with visibility into where legacy tech increases exposure.

The result: teams can finally focus on the risks that matter most to uptime, safety, and resilience without wasting resources on noise.

Automating compliance with dynamic IEC-62443 reporting

Darktrace / OT now includes a purpose-built IEC-62443-3-3 compliance module, giving industrial teams real-time visibility into their alignment with regulatory standards. No spreadsheets required!

Industrial environments are among the most heavily regulated. However, for many OT teams, staying compliant is still a manual, time-consuming process.

Darktrace / OT introduces a dedicated IEC-62443-3-3 module designed specifically for industrial environments. Security and operations teams can now map their security posture to IEC standards in real time, directly within the platform. The module automatically gathers evidence across all four security levels, flags non-compliance, and generates structured reports to support audit preparation, all in just a few clicks.Most organizations rely on spreadsheets or static tools to track compliance, without clear visibility into which controls meet standards like IEC-62443. The result is hidden gaps, resource-heavy audits, and slow remediation cycles.

Even dedicated compliance tools are often built for IT, require complex setup, and overlook the unique devices found in OT environments. This leaves teams stuck with fragmented reporting and limited assurance that their controls are actually aligned with regulatory expectations.

By automating compliance tracking, surfacing what matters most, and being purpose built for industrial environments, Darktrace / OT empowers organizations to reduce audit fatigue, eliminate blind spots, and focus resources where they’re needed most.

Expanding protocol visibility with deep insights for specialized OT operations

Darktrace has expanded its Deep Packet Inspection (DPI) capabilities to support five industry-specific protocols, across healthcare, semiconductor manufacturing, and ABB control systems.

The new protocols build on existing capabilities across all OT industry verticals and protocol types to ensure the Darktrace Self-Learning AI TM can learn intelligently about even more assets in complex industrial environments. By enabling native, AI-driven inspection of these protocols, Darktrace can identify both security threats and operational issues without relying on additional appliances or complex integrations.

Most security platforms lack native support for industry-specific protocols, creating critical visibility gaps in customer environments like healthcare, semiconductor manufacturing, and ABB-heavy industrial automation. Without deep protocol awareness, organizations struggle to accurately identify specialized OT and IoT assets, detect malicious activity concealed within proprietary protocol traffic, and generate reliable device risk profiles due to insufficient telemetry.

These blind spots result in incomplete asset inventories, and ultimately, flawed risk posture assessments which over-index for CVE patching and legacy equipment.

By combining protocol-aware detection with full-stack visibility across IT, OT, and IoT, Darktrace’s AI can correlate anomalies across domains. For example, connecting an anomaly from a Medical IoT (MIoT) device with suspicious behavior in IT systems, providing actionable, contextual insights other solutions often miss.

Conclusion

Together, these capabilities take OT security beyond alert noise and basic CVE matching, delivering continuous compliance, protocol-aware visibility, and actionable, prioritized risk insights, all inside a single, unified platform built for the realities of industrial environments.

[related-resource]

Continue reading
About the author
Pallavi Singh
Product Marketing Manager, OT Security & Compliance
Your data. Our AI.
Elevate your network security with Darktrace AI
OSZAR »