Blog
/
Endpoint
/
November 23, 2022

How Darktrace Could Have Stopped a Surprise DDoS Incident

Learn how Darktrace could revolutionize DDoS defense, enabling companies to stop threats without 24/7 monitoring. Read more about how we thwart attacks!
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Steven Sosa
Analyst Team Lead
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
23
Nov 2022

When is the best time to be hit with a cyber-attack?

The answer that springs to most is ‘Never’,  however in today’s threat landscape, this is often wishful thinking. The next best answer is ‘When we’re ready for it’. Yet, this does not take into account the intention of those committing attacks. The reality is that the best time for a cyber-attack is when no one else is around to stop it.

When do cyber attacks happen?

Previous analysis from Mandiant reveals that over half of ransomware compromises occur at out of work hours, a trend Darktrace has also witnessed in the past two years [1]. This is deliberate, as the fewer people that are online, the harder it is to get ahold of security teams and the higher the likelihood there is of an attacker achieving their goals. Given this landscape, it is clear that autonomous response is more important than ever. In the absence of human resources, autonomous security can fill in the gap long enough for IT teams to begin remediation. 

This blog will detail an incident where autonomous response provided by Darktrace RESPOND would have entirely prevented an infection attempt, despite it occurring in the early hours of the morning. Because the customer had RESPOND in human confirmation mode (AI response must first be approved by a human), the attempt by XorDDoS was ultimately successful. Given that the attack occurred in the early hours of the morning, there was likely no one around to confirm Darktrace RESPOND actions and prevent the attack.

XorDDoS Primer

XorDDoS is a botnet, a type of malware that infects devices for the purpose of controlling them as a collective to carry out specific actions. In the case of XorDDoS, it infects devices in order to carry out denial of service attacks using said devices. This year, Microsoft has reported a substantial increase in activity from this malware strain, with an increased focus on Linux based operating systems [2]. XorDDoS most commonly finds its way onto systems via SSH brute-forcing, and once deployed, encrypts its traffic with an XOR cipher. XorDDoS has also been known to download additional payloads such as backdoors and cryptominers. Needless to say, this is not something you have on a corporate network. 

Initial Intrusion of XorDDoS

The incident begins with a device first coming online on 10th August. The device appeared to be internet facing and Darktrace saw hundreds of incoming SSH connections to the device from a variety of endpoints. Over the course of the next five days, the device received thousands of failed SSH connections from several IP addresses that, according to OSINT, may be associated with web scanners [3]. Successful SSH connections were seen from internal IP addresses as well as IP addresses associated with IT solutions relevant to Asia-Pacific (the customer’s geographic location). On midnight of 15th August, the first successful SSH connection occurred from an IP address that has been associated with web scanning. This connection lasted around an hour and a half, and the external IP uploaded around 3.3 MB of data to the client device. Given all of this, and what the industry knows about XorDDoS, it is likely that the client device had SSH exposed to the Internet which was then brute-forced for initial access. 

There were a few hours of dwell until the device downloaded a ZIP file from an Iraqi mirror site, mirror[.]earthlink[.]iq at around 6AM in the customer time zone. The endpoint had only been seen once before and was 100% rare for the network. Since there has been no information on OSINT around this particular endpoint or the ZIP files downloaded from the mirror site, the detection was based on the unusualness of the download.

Following this, Darktrace saw the device make a curl request to the external IP address 107.148.210[.]218. This was highlighted as the user agent associated with curl had not been seen on the device before, and the connection was made directly to an IP address without a hostname (suggesting that the connection was scripted). The URIs of these requests were ‘1.txt’ and ‘2.txt’. 

The ‘.txt’ extensions on the URIs were deceiving and it turned out that both were executable files masquerading as text files. OSINT on both of the hashes revealed that the files were likely associated with XorDDoS. Additionally, judging from packet captures of the connection, the true file extension appeared to be ‘.ELF’. As XorDDoS primarily affects Linux devices, this would make sense as the true extension of the payload. 

Figure 1: Packet capture of the curl request made by the breach device.

C2 Connections

Immediately after the ‘.ELF’ download, Darktrace saw the device attempting C2 connections. This included connections to DGA-like domains on unusual ports such as 1525 and 8993. Luckily, the client’s firewall seems to have blocked these connections, but that didn’t stop XorDDoS. XorDDoS continued to attempt connections to C2 domains, which triggered several Proactive Threat Notifications (PTNs) that were alerted by SOC. Following the PTNs, the client manually quarantined the device a few hours after the initial breach. This lapse in actioning was likely due to an early morning timing with the customer’s employees not being online yet. After the device was quarantined, Darktrace still saw XorDDoS attempting C2 connections. In all, hundreds of thousands of C2 connections were detected before the device was removed from the network sometime on 7th September.

Figure 2: AI Analyst was able to identify the anomalous activity and group it together in an easy to parse format.

An Alternate Timeline 

Although the device was ultimately removed, this attack would have been entirely prevented had RESPOND/Network not been in human confirmation mode. Autonomous response would have kicked in once the device downloaded the ‘.ZIP file’ from the Iraqi mirror site and blocked all outgoing connections from the breach device for an hour:

Figure 3: Screenshot of the first Antigena (RESPOND) breach that would have prevented all subsequent activity.

The model breach in Figure 3 would have prevented the download of the XorDDoS executables, and then prevented the subsequent C2 connections. This hour would have been crucial, as it would have given enough time for members of the customer’s security team to get back online should the compromised device have attempted anything else. With everyone attentive, it is unlikely that this activity would have lasted as long as it did. Had the attack been allowed to progress further, the infected device would have at the very least been an unwilling participant in a future DDoS attack. Additionally, the device could have a backdoor placed within it, and additional malware such as cryptojackers might have been deployed. 

Conclusions 

Unfortunately, we do not exist in the alternate timeline that autonomous response would have prevented this whole series of events.Luckily, although it was not in place, the PTN alerts provided by Darktrace’s SOC team still sped up the process of remediation in an event that was never intended to be discovered given the time it occurred. Unusual times of attack are not just limited to ransomware, so organizations need to have measures in place for the times that are most inconvenient to them, but most convenient to attackers. With Darktrace/RESPOND however, this is just one click away.

Thanks to Brianna Leddy for their contribution.

Appendices

Darktrace Model Detections

Below is a list of model breaches in order of trigger. The Proactive Threat Notification models are in bold and only the first Antigena [RESPOND] breach that would have prevented the initial compromise has been included. A manual quarantine breach has also been added to show when the customer began remediation.

  • Compliance / Incoming SSH, August 12th 23:39 GMT +8
  • Anomalous File / Zip or Gzip from Rare External Location, August 15th, 6:07 GMT +8 
  • Antigena / Network / External Threat / Antigena File then New Outbound Block, August 15th 6:36 GMT +8 [part of the RESPOND functionality]
  • Anomalous Connection / New User Agent to IP Without Hostname, August 15th 6:59 GMT +8
  • Anomalous File / Numeric Exe Download, August 15th 6:59 GMT +8
  • Anomalous File / Masqueraded File Transfer, August 15th 6:59 GMT +8
  • Anomalous File / EXE from Rare External Location, August 15th 6:59 GMT +8
  • Device / Internet Facing Device with High Priority Alert, August 15th 6:59 GMT +8
  • Compromise / Rare Domain Pointing to Internal IP, August 15th 6:59 GMT +8
  • Device / Initial Breach Chain Compromise, August 15th 6:59 GMT +8
  • Compromise / Large Number of Suspicious Failed Connections, August 15th 7:01 GMT +8
  • Compromise / High Volume of Connections with Beacon Score, August 15th 7:04 GMT +8
  • Compromise / Fast Beaconing to DGA, August 15th 7:04 GMT +8
  • Compromise / Suspicious File and C2, August 15th 7:04 GMT +8
  • Antigena / Network / Manual / Quarantine Device, August 15th 8:54 GMT +8 [part of the RESPOND functionality]

List of IOCs

MITRE ATT&CK Mapping

Reference List

[1] They Come in the Night: Ransomware Deployment Trends

[2] Rise in XorDdos: A deeper look at the stealthy DDoS malware targeting Linux devices

[3] Alien Vault: Domain Navicatadvvr & https://www.virustotal.com/gui/domain/navicatadvvr.com & https://maltiverse.com/hostname/navicatadvvr.com

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Steven Sosa
Analyst Team Lead

More in this series

No items found.

Blog

/

/

June 12, 2025

Modernising UK Cyber Regulation: Implications of the Cyber Security and Resilience Bill

Default blog imageDefault blog image

The need for security and continued cyber resilience

The UK government has made national security a key priority, and the new Cyber Security and Resilience Bill (CSRB) is a direct reflection of that focus. In introducing the Bill, Secretary of State for Science, Innovation and Technology, Peter Kyle, recognised that the UK is “desperately exposed” to cyber threats—from criminal groups to hostile nation-states that are increasingly targeting the UK's digital systems and critical infrastructure[1].

Context and timeline for the new legislation

First announced during the King’s Speech of July 2024, and elaborated in a Department for Science, Innovation and Technology (DSIT) policy statement published in April 2025, the CSRB is expected to be introduced in Parliament during the 2025-26 legislative session.

For now, organisations in the UK remain subject to the 2018 Network and Information Systems (NIS) Regulations – an EU-derived law which was drafted before today’s increasing digitisation of critical services, rise in cloud adoption and emergence of AI-powered threats.

Why modernisation is critical

Without modernisation, the Government believes UK’s infrastructure and economy risks falling behind international peers. The EU, which revised its cybersecurity regulation under the NIS2 Directive, already imposes stricter requirements on a broader set of sectors.

The urgency of the Bill is also underscored by recent high-impact incidents, including the Synnovis attack which targeted the National Health Service (NHS) suppliers and disrupted thousands of patient appointments and procedures[2]. The Government has argued that such events highlight a systemic failure to keep pace with a rapidly evolving threat landscape[3].

What the Bill aims to achieve

This Bill represents a decisive shift. According to the Government, it will modernise and future‑proof the UK’s cyber laws, extending oversight to areas where risk has grown but regulation has not kept pace[4]. While the legislation builds on previous consultations and draws lessons from international frameworks like the EU’s NIS2 directive, it also aims to tailor solutions to the UK’s unique threat environment.

Importantly, the Government is framing cybersecurity not as a barrier to growth, but as a foundation for it. The policy statement emphasises that strong digital resilience will create the stability businesses need to thrive, innovate, and invest[5]. Therefore, the goals of the Bill will not only be to enhance security but also act as an enabler to innovation and economic growth.

Recognition that AI changes cyber threats

The CSRB policy statement recognises that AI is fundamentally reshaping the threat landscape, with adversaries now leveraging AI and commercial cyber tools to exploit vulnerabilities in critical infrastructure and supply chains. Indeed, the NCSC has recently assessed that AI will almost certainly lead to “an increase in the frequency and intensity of cyber threats”[6]. Accordingly, the policy statement insists that the UK’s regulatory framework “must keep pace and provide flexibility to respond to future threats as and when they emerge”[7].

To address the threat, the Bill signals new obligations for MSPs and data centres, timely incident reporting and dynamic guidance that can be refreshed without fresh primary legislation, making it essential for firms to follow best practices.

What might change in day-to-day practice?

New organisations in scope of regulation

Under the existing Network and Information Systems (NIS) Regulations[8], the UK already supervises operators in five critical sectors—energy, transport, drinking water, health (Operators of Essential Services, OES) and digital infrastructure (Relevant Digital Service Providers, RDSPs).

The Cyber Security and Resilience Bill retains this foundation and adds Managed Service Providers (MSPs) and data centres to the scope of regulation to “better recognise the increasing reliance on digital services and the vulnerabilities posed by supply chains”[9]. It also grants the Secretary of State for Science, Innovation and Technology the power to add new sectors or sub‑sectors via secondary legislation, following consultation with Parliament and industry.

Managed service providers (MSPs)

MSPs occupy a central position within the UK’s enterprise information‑technology infrastructure. Because they remotely run or monitor clients’ systems, networks and data, they hold privileged, often continuous access to multiple environments. This foothold makes them an attractive target for malicious actors.

The Bill aims to bring MSPs in scope of regulation by making them subject to the same duties as those placed on firms that provide digital services under the 2018 NIS Regulations. By doing so, the Bill seeks to raise baseline security across thousands of customer environments and to provide regulators with better visibility of supply‑chain risk.

The proposed definition for MSPs is a service which:

  1. Is provided to another organisation
  2. Relies on the use of network and information systems to deliver the service
  3. Relates to ongoing management support, active administration and/or monitoring of AI systems, IT infrastructure, applications, and/or IT networks, including for the purpose of activities relating to cyber security.
  4. Involves a network connection and/or access to the customer’s network and information systems.

Data centres

Building on the September 2024 designation of data centres as critical national infrastructure, the CSRB will fold data infrastructure into the NIS-style regime by naming it an “relevant sector" and data centres as “essential service”[10].

About 182 colocation facilities run by 64 operators will therefore come under statutory duties to notify the regulator, maintain proportionate CAF-aligned controls and report significant incidents, regardless of who owns them or what workloads they host.

New requirements for regulated organisations

Incident reporting processes

There could be stricter timelines or broader definitions of what counts as a reportable incident. This might nudge organisations to formalise detection, triage, and escalation procedures.

The Government is proposing to introduce a new two-stage incident reporting process. This would include an initial notification which would be submitted within 24 hours of becoming aware of a significant incident, followed by a full incident report which should be submitted within 72 hours of the same.

Supply chain assurance requirements

Supply chains for the UK's most critical services are becoming increasingly complex and present new and serious vulnerabilities for cyber-attacks. The recent Synnovis ransomware attacks on the NHS[11] exemplify the danger posed by attacks against the supply chains of important services and organisations. This is concerning when reflecting on the latest Cyber Security Breaches survey conducted by DSIT, which highlights that fewer than 25% of large businesses review their supply chain risks[12].

Despite these risks, the UK’s legacy cybersecurity regulatory regime does not explicitly cover supply chain risk management. The UK instead relies on supporting and non-statutory guidance to close this gap, such as the NCSC’s Cyber Assessment Framework (CAF)[13].

The CSRB policy statement acts on this regulatory shortcoming and recognises that “a single supplier’s disruption can have far-reaching impacts on the delivery of essential or digital services”[14].

To address this, the Bill would make in-scope organisations (OES and RDPS) directly accountable for the cybersecurity of their supply chains. Secondary legislation would spell out these duties in detail, ensuring that OES and RDSPs systematically assess and mitigate third-party cyber risks.

Updated and strengthened security requirements

By placing the CAF into a firmer footing and backing it with a statutory Code of Practice, the Government is setting clearer expectations about government expectations on technical standards and methods organisations will need to follow to prove their resilience.

How Darktrace can help support affected organizations

Demonstrate resilience

Darktrace’s Self-Learning AITM continuously monitors your digital estate across cloud, network, OT, email, and endpoint to detect, investigate, and autonomously respond to emerging threats in real time. This persistent visibility and defense posture helps organizations demonstrate cyber resilience to regulators with confidence.

Streamline incident reporting and compliance

Darktrace surfaces clear alerts and automated investigation reports, complete with timeline views and root cause analysis. These insights reduce the time and complexity of regulatory incident reporting and support internal compliance workflows with auditable, AI-generated evidence.

Improve supply chain visibility

With full visibility across connected systems and third-party activity, Darktrace detects early indicators of lateral movement, account compromise, and unusual behavior stemming from vendor or partner access, reducing the risk of supply chain-originated cyber-attacks.

Ensure MSPs can meet new standards

For managed service providers, Darktrace offers native multi-tenant support and autonomous threat response that can be embedded directly into customer environments. This ensures consistent, scalable security standards across clients—helping MSPs address increasing regulatory obligations.

[related-resource]

References

[1] https://www.theguardian.com/uk-news/article/2024/jul/29/uk-desperately-exposed-to-cyber-threats-and-pandemics-says-minister

[2] https://www.england.nhs.uk/2024/06/synnovis-cyber-attack-statement-from-nhs-england/

[3] https://www.gov.uk/government/publications/cyber-security-and-resilience-bill-policy-statement/cyber-security-and-resilience-bill-policy-statement

[4] https://www.gov.uk/government/publications/cyber-security-and-resilience-bill-policy-statement/cyber-security-and-resilience-bill-policy-statement

[5] https://www.gov.uk/government/publications/cyber-security-and-resilience-bill-policy-statement/cyber-security-and-resilience-bill-policy-statement

[6] https://www.ncsc.gov.uk/report/impact-ai-cyber-threat-now-2027

[7] https://www.gov.uk/government/publications/cyber-security-and-resilience-bill-policy-statement/cyber-security-and-resilience-bill-policy-statement

[8] https://www.gov.uk/government/collections/nis-directive-and-nis-regulations-2018

[9] https://www.gov.uk/government/publications/cyber-security-and-resilience-bill-policy-statement/cyber-security-and-resilience-bill-policy-statement

[10] https://www.gov.uk/government/publications/cyber-security-and-resilience-bill-policy-statement/cyber-security-and-resilience-bill-policy-statement

[11] https://www.england.nhs.uk/2024/06/synnovis-cyber-attack-statement-from-nhs-england/

[12] https://www.gov.uk/government/statistics/cyber-security-breaches-survey-2025/cyber-security-breaches-survey-2025

[13] https://www.ncsc.gov.uk/collection/cyber-assessment-framework

[14] https://www.gov.uk/government/publications/cyber-security-and-resilience-bill-policy-statement/cyber-security-and-resilience-bill-policy-statement

Continue reading
About the author
The Darktrace Community

Blog

/

Network

/

June 12, 2025

Unpacking ClickFix: Darktrace’s detection of a prolific social engineering tactic

Default blog imageDefault blog image

What is ClickFix and how does it work?

Amid heightened security awareness, threat actors continue to seek stealthy methods to infiltrate target networks, often finding the human end user to be the most vulnerable and easily exploited entry point.

ClickFix baiting is an exploitation of the end user, making use of social engineering techniques masquerading as error messages or routine verification processes, that can result in malicious code execution.

Since March 2024, the simplicity of this technique has drawn attention from a range of threat actors, from individual cybercriminals to Advanced Persistent Threat (APT) groups such as APT28 and MuddyWater, linked to Russia and Iran respectively, introducing security threats on a broader scale [1]. ClickFix campaigns have been observed affecting organizations in across multiple industries, including healthcare, hospitality, automotive and government [2][3].

Actors carrying out these targeted attacks typically utilize similar techniques, tools and procedures (TTPs) to gain initial access. These include spear phishing attacks, drive-by compromises, or exploiting trust in familiar online platforms, such as GitHub, to deliver malicious payloads [2][3]. Often, a hidden link within an email or malvertisements on compromised legitimate websites redirect the end user to a malicious URL [4]. These take the form of ‘Fix It’ or fake CAPTCHA prompts [4].

From there, users are misled into believing they are completing a human verification step, registering a device, or fixing a non-existent issue such as a webpage display error. As a result, they are guided through a three-step process that ultimately enables the execution of malicious PowerShell commands:

  1. Open a Windows Run dialog box [press Windows Key + R]
  2. Automatically or manually copy and paste a malicious PowerShell command into the terminal [press CTRL+V]
  3. And run the prompt [press ‘Enter’] [2]

Once the malicious PowerShell command is executed, threat actors then establish command and control (C2) communication within the targeted environment before moving laterally through the network with the intent of obtaining and stealing sensitive data [4]. Malicious payloads associated with various malware families, such as XWorm, Lumma, and AsyncRAT, are often deployed [2][3].

Attack timeline of ClickFix cyber attack

Based on investigations conducted by Darktrace’s Threat Research team in early 2025, this blog highlights Darktrace’s capability to detect ClickFix baiting activity following initial access.

Darktrace’s coverage of a ClickFix attack chain

Darktrace identified multiple ClickFix attacks across customer environments in both Europe, the Middle East, and Africa (EMEA) and the United States. The following incident details a specific attack on a customer network that occurred on April 9, 2025.

Although the initial access phase of this specific attack occurred outside Darktrace’s visibility, other affected networks showed compromise beginning with phishing emails or fake CAPTCHA prompts that led users to execute malicious PowerShell commands.

Darktrace’s visibility into the compromise began when the threat actor initiated external communication with their C2 infrastructure, with Darktrace / NETWORK detecting the use of a new PowerShell user agent, indicating an attempt at remote code execution.

Darktrace / NETWORK's detection of a device making an HTTP connection with new PowerShell user agent, indicating PowerShell abuse for C2 communications.
Figure 1: Darktrace / NETWORK's detection of a device making an HTTP connection with new PowerShell user agent, indicating PowerShell abuse for C2 communications.

Download of Malicious Files for Lateral Movement

A few minutes later, the compromised device was observed downloading a numerically named file. Numeric files like this are often intentionally nondescript and associated with malware. In this case, the file name adhered to a specific pattern, matching the regular expression: /174(\d){7}/. Further investigation into the file revealed that it contained additional malicious code designed to further exploit remote services and gather device information.

Darktrace / NETWORK's detection of a numeric file, one minute after the new PowerShell User Agent alert.
Figure 2: Darktrace / NETWORK's detection of a numeric file, one minute after the new PowerShell User Agent alert.

The file contained a script that sent system information to a specified IP address using an HTTP POST request, which also processed the response. This process was verified through packet capture (PCAP) analysis conducted by the Darktrace Threat Research team.

By analyzing the body content of the HTTP GET request, it was observed that the command converts the current time to Unix epoch time format (i.e., 9 April 2025 13:26:40 GMT), resulting in an additional numeric file observed in the URI: /1744205200.

PCAP highlighting the HTTP GET request that sends information to the specific IP, 193.36.38[.]237, which then generates another numeric file titled per the current time.
Figure 3: PCAP highlighting the HTTP GET request that sends information to the specific IP, 193.36.38[.]237, which then generates another numeric file titled per the current time.

Across Darktrace’s investigations into other customers' affected by ClickFix campaigns, both internal information discovery events and further execution of malicious code were observed.

Data Exfiltration

By following the HTTP stream in the same PCAP, the Darktrace Threat Research Team assessed the activity as indicative of data exfiltration involving system and device information to the same command-and-control (C2) endpoint, , 193.36.38[.]237. This endpoint was flagged as malicious by multiple open-source intelligence (OSINT) vendors [5].

PCAP highlighting HTTP POST connection with the numeric file per the URI /1744205200 that indicates data exfiltration to 193.36.38[.]237.
Figure 4: PCAP highlighting HTTP POST connection with the numeric file per the URI /1744205200 that indicates data exfiltration to 193.36.38[.]237.

Further analysis of Darktrace’s Advanced Search logs showed that the attacker’s malicious code scanned for internal system information, which was then sent to a C2 server via an HTTP POST request, indicating data exfiltration

Advanced Search further highlights Darktrace's observation of the HTTP POST request, with the second numeric file representing data exfiltration.
Figure 5: Advanced Search further highlights Darktrace's observation of the HTTP POST request, with the second numeric file representing data exfiltration.

Actions on objectives

Around ten minutes after the initial C2 communications, the compromised device was observed connecting to an additional rare endpoint, 188.34.195[.]44. Further analysis of this endpoint confirmed its association with ClickFix campaigns, with several OSINT vendors linking it to previously reported attacks [6].

In the final HTTP POST request made by the device, Darktrace detected a file at the URI /init1234 in the connection logs to the malicious endpoint 188.34.195[.]44, likely depicting the successful completion of the attack’s objective, automated data egress to a ClickFix C2 server.

Darktrace / NETWORK grouped together the observed indicators of compromise (IoCs) on the compromised device and triggered an Enhanced Monitoring model alert, a high-priority detection model designed to identify activity indicative of the early stages of an attack. These models are monitored and triaged 24/7 by Darktrace’s Security Operations Center (SOC) as part of the Managed Threat Detection service, ensuring customers are promptly notified of malicious activity as soon as it emerges.

Darktrace correlated the separate malicious connections that pertained to a single campaign.
Figure 6: Darktrace correlated the separate malicious connections that pertained to a single campaign.

Darktrace Autonomous Response

In the incident outlined above, Darktrace was not configured in Autonomous Response mode. As a result, while actions to block specific connections were suggested, they had to be manually implemented by the customer’s security team. Due to the speed of the attack, this need for manual intervention allowed the threat to escalate without interruption.

However, in a different example, Autonomous Response was fully enabled, allowing Darktrace to immediately block connections to the malicious endpoint (138.199.156[.]22) just one second after the initial connection in which a numerically named file was downloaded [7].

Darktrace Autonomous Response blocked connections to a suspicious endpoint following the observation of the numeric file download.
Figure 7: Darktrace Autonomous Response blocked connections to a suspicious endpoint following the observation of the numeric file download.

This customer was also subscribed to our Managed Detection and Response service, Darktrace’s SOC extended a ‘Quarantine Device’ action that had already been autonomously applied in order to buy their security team additional time for remediation.

Autonomous Response blocked connections to malicious endpoints, including 138.199.156[.]22, 185.250.151[.]155, and rkuagqnmnypetvf[.]top, and also quarantined the affected device. These actions were later manually reinforced by the Darktrace SOC.
Figure 8: Autonomous Response blocked connections to malicious endpoints, including 138.199.156[.]22, 185.250.151[.]155, and rkuagqnmnypetvf[.]top, and also quarantined the affected device. These actions were later manually reinforced by the Darktrace SOC.

Conclusion

ClickFix baiting is a widely used tactic in which threat actors exploit human error to bypass security defenses. By tricking end point users into performing seemingly harmless, everyday actions, attackers gain initial access to systems where they can access and exfiltrate sensitive data.

Darktrace’s anomaly-based approach to threat detection identifies early indicators of targeted attacks without relying on prior knowledge or IoCs. By continuously learning each device’s unique pattern of life, Darktrace detects subtle deviations that may signal a compromise. In this case, Darktrace's Autonomous Response, when operating in a fully autonomous mode, was able to swiftly contain the threat before it could progress further along the attack lifecycle.

Credit to Keanna Grelicha (Cyber Analyst) and Jennifer Beckett (Cyber Analyst)

Appendices

NETWORK Models

  • Device / New PowerShell User Agent
  • Anomalous Connection / New User Agent to IP Without Hostname
  • Anomalous Connection / Posting HTTP to IP Without Hostname
  • Anomalous Connection / Powershell to Rare External
  • Device / Suspicious Domain
  • Device / New User Agent and New IP
  • Anomalous File / New User Agent Followed By Numeric File Download (Enhanced Monitoring Model)
  • Device / Initial Attack Chain Activity (Enhanced Monitoring Model)

Autonomous Response Models

  • Antigena / Network::Significant Anomaly::Antigena Significant Anomaly from Client Block
  • Antigena / Network::Significant Anomaly::Antigena Enhanced Monitoring from Client Block
  • Antigena / Network::External Threat::Antigena File then New Outbound Block
  • Antigena / Network::External Threat::Antigena Suspicious File Block
  • Antigena / Network::Significant Anomaly::Antigena Alerts Over Time Block
  • Antigena / Network::External Threat::Antigena Suspicious File Block

IoC - Type - Description + Confidence

·       141.193.213[.]11 – IP address – Possible C2 Infrastructure

·       141.193.213[.]10 – IP address – Possible C2 Infrastructure

·       64.94.84[.]217 – IP address – Possible C2 Infrastructure

·       138.199.156[.]22 – IP address – C2 server

·       94.181.229[.]250 – IP address – Possible C2 Infrastructure

·       216.245.184[.]181 – IP address – Possible C2 Infrastructure

·       212.237.217[.]182 – IP address – Possible C2 Infrastructure

·       168.119.96[.]41 – IP address – Possible C2 Infrastructure

·       193.36.38[.]237 – IP address – C2 server

·       188.34.195[.]44 – IP address – C2 server

·       205.196.186[.]70 – IP address – Possible C2 Infrastructure

·       rkuagqnmnypetvf[.]top – Hostname – C2 server

·       shorturl[.]at/UB6E6 – Hostname – Possible C2 Infrastructure

·       tlgrm-redirect[.]icu – Hostname – Possible C2 Infrastructure

·       diagnostics.medgenome[.]com – Hostname – Compromised Website

·       /1741714208 – URI – Possible malicious file

·       /1741718928 – URI – Possible malicious file

·       /1743871488 – URI – Possible malicious file

·       /1741200416 – URI – Possible malicious file

·       /1741356624 – URI – Possible malicious file

·       /ttt – URI – Possible malicious file

·       /1741965536 – URI – Possible malicious file

·       /1.txt – URI – Possible malicious file

·       /1744205184 – URI – Possible malicious file

·       /1744139920 – URI – Possible malicious file

·       /1744134352 – URI – Possible malicious file

·       /1744125600 – URI – Possible malicious file

·       /1[.]php?s=527 – URI – Possible malicious file

·       34ff2f72c191434ce5f20ebc1a7e823794ac69bba9df70721829d66e7196b044 – SHA-256 Hash – Possible malicious file

·       10a5eab3eef36e75bd3139fe3a3c760f54be33e3 – SHA-1 Hash – Possible malicious file

MITRE ATT&CK Mapping

Tactic – Technique – Sub-Technique  

Spearphishing Link - INITIAL ACCESS - T1566.002 - T1566

Drive-by Compromise - INITIAL ACCESS - T1189

PowerShell - EXECUTION - T1059.001 - T1059

Exploitation of Remote Services - LATERAL MOVEMENT - T1210

Web Protocols - COMMAND AND CONTROL - T1071.001 - T1071

Automated Exfiltration - EXFILTRATION - T1020 - T1020.001

References

[1] https://www.logpoint.com/en/blog/emerging-threats/clickfix-another-deceptive-social-engineering-technique/

[2] https://www.proofpoint.com/us/blog/threat-insight/security-brief-clickfix-social-engineering-technique-floods-threat-landscape

[3] https://cyberresilience.com/threatonomics/understanding-the-clickfix-attack/

[4] https://www.group-ib.com/blog/clickfix-the-social-engineering-technique-hackers-use-to-manipulate-victims/

[5] https://www.virustotal.com/gui/ip-address/193.36.38.237/detection

[6] https://www.virustotal.com/gui/ip-address/188.34.195.44/community

[7] https://www.virustotal.com/gui/ip-address/138.199.156.22/detection

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI
OSZAR »